1
|
Oliveira FS, da Silva Rodrigues R, Cavicchioli VQ, de Carvalho AF, Nero LA. Influence of different culture media on the antimicrobial activity of Pediococcus pentosaceus ST65ACC against Listeria monocytogenes. Braz J Microbiol 2024; 55:2539-2545. [PMID: 38789904 PMCID: PMC11405628 DOI: 10.1007/s42770-024-01391-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Pediococcus pentosaceus ST65ACC is a bacteriocinogenic lactic acid bacteria (LAB) isolated from Brazilian artisanal cheese that is capable of inhibiting different food pathogens, mainly Listeria monocytogenes. The production of bacteriocins can be influenced by several growth conditions, such as temperature, pH, and medium composition. This study aimed to evaluate the effect of different culture media on the production of bacteriocins and antimicrobial activity of P. pentosaceus ST65ACC on L. monocytogenes Scott A. The strains were inoculated alone and in coculture in four different media: BHI broth, MRS broth, meat broth, and reconstituted skim milk (RSM) 10% (w/v). The culture media were then incubated at 37 °C for 96 h, and count analysis, pH measurement, and bacteriocin production were performed at 0, 24, 48, 72 and 96 h. L. monocytogenes was inhibited to nondetectable levels in coculture with P. pentosaceus ST65ACC in MRS broth within 96 h, consistent with the high production of bacteriocin throughout the analysis period (3,200-12,800 AU/mL). However, lower inhibitory activities of P. pentosaceus ST65ACC on L. monocytogenes Scott A were recorded in BHI, RSM, and meat broth, with low or no production of bacteriocins at the analyzed times. The composition of these culture media may have repressed the production and activity of bacteriocins and, consequently, the antagonist activity of P. pentosaceus ST65ACC on L. monocytogenes Scott A. The results showed that the antimicrobial activity was more effective in MRS broth, presenting greater production of bacteriocins and less variability when compared to the other media analyzed.
Collapse
Affiliation(s)
- Francielly Soares Oliveira
- Departamento de Veterinária, InsPOA- Laboratório de Inspeção de Produtos de Origem Animal, Universidade Federal de Viçosa, Viçosa, 36570 900, MG, Brazil
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570 900, MG, Brazil
| | - Rafaela da Silva Rodrigues
- Departamento de Veterinária, InsPOA- Laboratório de Inspeção de Produtos de Origem Animal, Universidade Federal de Viçosa, Viçosa, 36570 900, MG, Brazil
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570 900, MG, Brazil
| | - Valéria Quintana Cavicchioli
- Centro de Pesquisa em Alimentos, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, 74690 900, GO, Brazil
| | - Antônio Fernandes de Carvalho
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570 900, MG, Brazil
| | - Luís Augusto Nero
- Departamento de Veterinária, InsPOA- Laboratório de Inspeção de Produtos de Origem Animal, Universidade Federal de Viçosa, Viçosa, 36570 900, MG, Brazil.
| |
Collapse
|
2
|
Siddique N, Rahman MM, Akter S, Hasan MM, Das ZC, Hoque MN. Draft genome sequencing of Pediococcus acidilactici strains isolated from cow's milk: unlocking insights into functional traits and applications. Microbiol Resour Announc 2024; 13:e0025224. [PMID: 39023249 PMCID: PMC11320898 DOI: 10.1128/mra.00252-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
Pediococcus acidilactici is a potential probiotic bacteria isolated from diverse sources. However, strains isolated from milk, especially from raw milk of healthy cows, have not been thoroughly studied. Here, we report the draft genome sequence of P. acidilactici strains MBBL5 and MBBL7, isolated from milk samples of healthy cows.
Collapse
Affiliation(s)
- Naim Siddique
- Molecular Biology and Bioinformatics Laboratory, Department of Gynaecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Md. Morshedur Rahman
- Molecular Biology and Bioinformatics Laboratory, Department of Gynaecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Salma Akter
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | - Mehedi Mahmudul Hasan
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Ziban Chandra Das
- Molecular Biology and Bioinformatics Laboratory, Department of Gynaecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - M. Nazmul Hoque
- Molecular Biology and Bioinformatics Laboratory, Department of Gynaecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| |
Collapse
|
3
|
Lima JMS, Carneiro KO, Pinto UM, Todorov SD. Bacteriocinogenic anti-listerial properties and safety assessment of Enterococcus faecium and Lactococcus garvieae strains isolated from Brazilian artisanal cheesemaking environment. J Appl Microbiol 2024; 135:lxae159. [PMID: 38925659 DOI: 10.1093/jambio/lxae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/17/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
AIMS This study aimed to prospect and isolate lactic acid bacteria (LAB) from an artisanal cheese production environment, to assess their safety, and to explore their bacteriocinogenic potential against Listeria monocytogenes. METHODS AND RESULTS Samples were collected from surfaces of an artisanal-cheese production facility and after rep-PCR and 16S rRNA sequencing analysis, selected strains were identified as to be belonging to Lactococcus garvieae (1 strain) and Enterococcus faecium (14 isolates, grouped into three clusters) associated with different environments (worktables, cheese mold, ripening wooden shelves). All of them presented bacteriocinogenic potential against L. monocytogenes ATCC 7644 and were confirmed as safe (γ-hemolytic, not presenting antibiotic resistance, no mucus degradation properties, and no proteolytic or gelatinase enzyme activity). Additionally, cell growth, acidification and bacteriocins production kinetics, bacteriocin stability in relation to different temperatures, pH, and chemicals were evaluated. According to performed PCR analysis all studied strains generated positive evidence for the presence of entA and entP genes (for production of enterocins A and enterocins P, respectively). However, pediocin PA-1 associated gene was recorded only in DNA obtained from E. faecium ST02JL and Lc. garvieae ST04JL. CONCLUSIONS It is worth considering the application of these safe LAB or their bacteriocins in situ as an alternative means of controlling L. monocytogenes in cheese production environments, either alone or in combination with other antimicrobials.
Collapse
Affiliation(s)
- João Marcos Scafuro Lima
- ProBacLab, Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
- Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
| | - Kayque Ordonho Carneiro
- ProBacLab, Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
- Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
| | - Uelinton Manoel Pinto
- Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
- Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
| |
Collapse
|
4
|
Lu K, Wang X, Zhou Y, Zhu Q. Genomic characterization and probiotic potential assessment of an exopolysaccharide-producing strain Pediococcus pentosaceus LL-07 isolated from fermented meat. BMC Microbiol 2024; 24:142. [PMID: 38664612 PMCID: PMC11044368 DOI: 10.1186/s12866-024-03304-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND The genomic information available for Pediococcus pentosaceus is primarily derived from fermented fruits and vegetables, with less information available from fermented meat. P. pentosaceus LL-07, a strain isolated from fermented meat, has the capability of producing exopolysaccharides (EPS). To assess the probiotic attributes of P. pentosaceus LL-07, we conducted whole-genome sequencing (WGS) using the PacBio SequelIIe and Illumina MiSeq platforms, followed by in vitro experiments to explore its probiotic potential. RESULTS The genome size of P. pentosaceus LL-07 is 1,782,685 bp, comprising a circular chromosome and a circular plasmid. Our investigation revealed the absence of a CRISPR/Cas system. Sugar fermentation experiments demonstrated the characteristics of carbohydrate metabolism. P. pentosaceus LL-07 contains an EPS synthesis gene cluster consisting of 13 genes, which is different from the currently known gene cluster structure. NO genes associated with hemolysis or toxin synthesis were detected. Additionally, eighty-six genes related to antibiotic resistance were identified but not present in the prophage, transposon or plasmid. In vitro experiments demonstrated that P. pentosaceus LL-07 was comparable to the reference strain P. pentosaceus ATCC25745 in terms of tolerance to artificial digestive juice and bile, autoaggregation and antioxidation, and provided corresponding genomic evidence. CONCLUSION This study confirmed the safety and probiotic properties of P. pentosaceus LL-07 via complete genome and phenotype analysis, supporting its characterization as a potential probiotic candidate.
Collapse
Affiliation(s)
- Kuan Lu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guizhou Province, Guiyang, 550025, China
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, School of Liquor and Food Engineering, Guizhou University, Guizhou, Guiyang, 550025, China
| | - Xueya Wang
- Chili Pepper Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guizhou, Guiyang, 550006, China
| | - Ying Zhou
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, School of Liquor and Food Engineering, Guizhou University, Guizhou, Guiyang, 550025, China
| | - Qiujin Zhu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guizhou Province, Guiyang, 550025, China.
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, School of Liquor and Food Engineering, Guizhou University, Guizhou, Guiyang, 550025, China.
| |
Collapse
|
5
|
Khalil T, Okla MK, Al-Qahtani WH, Ali F, Zahra M, Shakeela Q, Ahmed S, Akhtar N, AbdElgawad H, Asif R, Hameed Y, Adetunji CO, Farid A, Ghazanfar S. Tracing probiotic producing bacterial species from gut of buffalo (Bubalus bubalis), South-East-Asia. BRAZ J BIOL 2024; 84:e259094. [DOI: 10.1590/1519-6984.259094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract Due to extensive application of antibiotics as growth promoters in animal feed, antimicrobial resistance has been increased. To overcome this challenge, rumen microbiologists search for new probiotics to improve the rate of livestock production. The present study was aimed to isolate and evaluate breed-specific lactic acid bacteria (LAB) as potential animal probiotics. The current study was conducted during 10 months from July 2020 to April 2021, in which a total of n=12 strains were isolated from different samples including milk, rumen, and feces of Nilli Ravi Buffaloes. These isolates were evaluated for their antimicrobial potential against common animal pathogens (Bacillus spp., E. coli, Staphylococcus aureus, Salmonella spp., Listeria spp.). All the isolates were identified using 16S rRNA gene sequencing and the phylogenetic analyses inferred that these strains showed close relations to the species of various genera; Enterococcus lactis, Pediococcus pentosaceus, Bacillus subtilis Weissella cibaria, Weissella soli, Bacillus tequilensis, Weissella bombi, Bacillus licheniformis, Lactococcus lactis, Bacillus megaterium, Lactobacillus ruminis, and Lactococcus lactis. NMCC-Ru2 has exhibited the enormous potential of antimicrobial activity, 28 mm, for Salmonella typhimurium;23 mm for Listeria monocytogenes 21 mm for E.coil. Highest resistance was seen in NMCC-Ru2 agasint test antbiotic, like 25.5 mm for Tetracycline. Overall results revesl that the probiotic profile of isolates was achieved using standard criteria, particularly with animal probiotic properties
Collapse
Affiliation(s)
- T. Khalil
- Hazara University Mansehra, Pakistan
| | | | | | - F. Ali
- Hazara University Mansehra, Pakistan
| | - M. Zahra
- University of Peshawar, Pakistan
| | - Q. Shakeela
- Faculty of Biological Science Quaid-i-Azam University, Pakistan
| | - S. Ahmed
- Hazara University Mansehra, Pakistan
| | - N. Akhtar
- National University of Medical Science, Pakistan
| | | | - Rizwan Asif
- Government College University Faisalabad, Pakistan
| | - Y. Hameed
- The Islamia University of Bahawalpur, Pakistan
| | | | | | | |
Collapse
|
6
|
Zinno P, Perozzi G, Devirgiliis C. Foodborne Microbial Communities as Potential Reservoirs of Antimicrobial Resistance Genes for Pathogens: A Critical Review of the Recent Literature. Microorganisms 2023; 11:1696. [PMID: 37512869 PMCID: PMC10383130 DOI: 10.3390/microorganisms11071696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance (AMR) is a global and increasing threat to human health. Several genetic determinants of AMR are found in environmental reservoirs, including bacteria naturally associated with widely consumed fermented foods. Through the food chain, these bacteria can reach the gut, where horizontal gene transfer (HGT) can occur within the complex and populated microbial environment. Numerous studies on this topic have been published over the past decades, but a conclusive picture of the potential impact of the non-pathogenic foodborne microbial reservoir on the spread of AMR to human pathogens has not yet emerged. This review critically evaluates a comprehensive list of recent experimental studies reporting the isolation of AMR bacteria associated with fermented foods, focusing on those reporting HGT events, which represent the main driver of AMR spread within and between different bacterial communities. Overall, our analysis points to the methodological heterogeneity as a major weakness impairing determination or a causal relation between the presence of AMR determinants within the foodborne microbial reservoir and their transmission to human pathogens. The aim is therefore to highlight the main gaps and needs to better standardize future studies addressing the potential role of non-pathogenic bacteria in the spread of AMR.
Collapse
Affiliation(s)
- Paola Zinno
- Institute for the Animal Production System in the Mediterranean Environment (ISPAAM), National Research Council, Piazzale Enrico Fermi 1, 80055 Portici, Italy
| | - Giuditta Perozzi
- Research Centre for Food and Nutrition, CREA (Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria), Via Ardeatina 546, 00178 Rome, Italy
| | - Chiara Devirgiliis
- Research Centre for Food and Nutrition, CREA (Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria), Via Ardeatina 546, 00178 Rome, Italy
| |
Collapse
|
7
|
Favaro L, Campanaro S, Fugaban JII, Treu L, Jung ES, d'Ovidio L, de Oliveira DP, Liong MT, Ivanova IV, Todorov SD. Genomic, metabolomic, and functional characterisation of beneficial properties of Pediococcus pentosaceus ST58, isolated from human oral cavity. Benef Microbes 2023; 14:57-72. [PMID: 36815495 DOI: 10.3920/bm2022.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Bacteriocins produced by lactic acid bacteria are proteinaceous antibacterial metabolites that normally exhibit bactericidal or bacteriostatic activity against genetically closely related bacteria. In this work, the bacteriocinogenic potential of Pediococcus pentosaceus strain ST58, isolated from oral cavity of a healthy volunteer was evaluated. To better understand the biological role of this strain, its technological and safety traits were deeply investigated through a combined approach considering physiological, metabolomic and genomic properties. Three out of 14 colonies generating inhibition zones were confirmed to be bacteriocin producers and, according to repPCR and RAPD-PCR, differentiation assays, and 16S rRNA sequencing it was confirmed to be replicates of the same strain, identified as P. pentosaceus, named ST58. Based on multiple isolation of the same strain (P. pentosaceus ST58) over the 26 weeks in screening process for the potential bacteriocinogenic strains from the oral cavity of the same volunteer, strain ST58 can be considered a persistent component of oral cavity microbiota. Genomic analysis of P. pentosaceus ST58 revealed the presence of operons encoding for bacteriocins pediocin PA-1 and penocin A. The produced bacteriocin(s) inhibited the growth of Listeria monocytogenes, Enterococcus spp. and some Lactobacillus spp. used to determine the activity spectrum. The highest levels of production (6400 AU/ml) were recorded against L. monocytogenes strains after 24 h of incubation and the antimicrobial activity was inhibited after treatment of the cell-free supernatants with proteolytic enzymes. Noteworthy, P. pentosaceus ST58 also presented antifungal activity and key metabolites potentially involved in these properties were identified. Overall, this strain can be of great biotechnological interest towards the development of effective bio-preservation cultures as well as potential health promoting microbes.
Collapse
Affiliation(s)
- L Favaro
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), Università degli Studi di Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, Italy
| | - S Campanaro
- Department of Biology, Università degli Studi di Padova, Via U. Bassi 58/b, 35121 Padova, Italy.,CRIBI Biotechnology Center, Università degli Studi di Padova, 35121 Padova, Italy
| | - J I I Fugaban
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk 791-708, South Korea.,National Food Institute, Technical University of Denmark, Building 202, Rm. 3.234, Kemitorvet, 2800 Kongens, Lyngby, Denmark
| | - L Treu
- Department of Biology, Università degli Studi di Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - E S Jung
- HEM Pharma Inc., Suwon, Gyeonggi 16229, Republic of Korea
| | - L d'Ovidio
- Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo (SP), Brazil
| | - D P de Oliveira
- Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo (SP), Brazil
| | - M-T Liong
- School of Industrial Technology, University Sains Malaysia, 11800 Penang, Malaysia
| | - I V Ivanova
- Department of General and Applied Microbiology, Faculty of Biology, Sofia University St. Kliment Ohridski, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - S D Todorov
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk 791-708, South Korea.,Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo (SP), Brazil
| |
Collapse
|
8
|
Beneficial features of pediococcus: from starter cultures and inhibitory activities to probiotic benefits. World J Microbiol Biotechnol 2023; 39:4. [PMID: 36344843 PMCID: PMC9640849 DOI: 10.1007/s11274-022-03419-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/18/2022] [Indexed: 11/09/2022]
Abstract
Pediococci are lactic acid bacteria (LAB) which have been used for centuries in the production of traditional fermented foods. There fermentative abilities were explored by the modern food processing industry in use of pediococci as starter cultures, enabling the production of fermented foods with distinct characteristics. Furthermore, some pediococci strains can produce bacteriocins and other antimicrobial metabolites (AMM), such as pediocins, which are increasingly being explored as bio-preservatives in various food matrices. Due to their versatility and inhibitory spectrum, pediococci bacteriocins and AMM are being extensively researched not only in the food industry, but also in veterinary and human medicine. Some of the pediococci were evaluated as potential probiotics with different beneficial areas of application associated with human and other animals' health. The main taxonomic characteristics of pediococci species are presented here, as well as and their potential roles and applications as starter cultures, as bio-preservatives and as probiotic candidates.
Collapse
|
9
|
Wang Z, Zhu T, Simpson DJ, Gänzle MG. Supercharged MPNs? Automated Determination of High-Throughput Most Probable Number (htMPN) Using Chip-Based 3D Digital PCR. Appl Environ Microbiol 2022; 88:e0082222. [PMID: 35856687 PMCID: PMC9361819 DOI: 10.1128/aem.00822-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/10/2022] [Indexed: 01/22/2023] Open
Abstract
Surface plating on agar and most probable number (MPN) are the standard methods for determining bacterial viability but both have limitations. Here we present a novel cell count method, high-throughput MPN (htMPN), that uses a chip-based digital PCR instrument to accelerate and to improve the quantification of viable or sublethally injured cells. This method tracks growth of up to 20,000 individual bacterial cells on a single chip. Single cells were grown in the individual wells of the chip at their optimal temperature until the cell density was high enough to detect the fluorescent signal with cell-permeant or cell-impermeant DNA-intercalating fluorescent dyes. This method based on microfluidic devices implemented in digital PCR equipment was equivalent to surface plating in determining cell counts of Escherichia coli, Salmonella enterica serovar Typhimurium, Fructilactobacillus sanfranciscensis, Pseudomonas putida, and vegetative cells but not spores of Bacillus subtilis. Viable E. coli could be enumerated within 7 h. Culture of strict aerobes was restricted to strains that are capable of nitrate respiration; organisms requiring complex media that also contain double-stranded DNA were detected after treatment of growth media with DNase before inoculation. Our approach not only monitors the frequency distribution of bacterial growth and determines cell counts with high reliability but also detected heat-injured cells of S. Typhimurium that escaped detection by the surface plating. Overall, the method accelerates detection of viable bacterial cells, facilitates automation, and offers new possibilities for the analysis of individual bacterial cells. IMPORTANCE htMPN uses chip-based fluorescence acquisition and is a simple and compact tool for automatic viable cell enumeration with applications in microbiological research. This method applies to a wide range of anaerobic or facultative anaerobic species and improves accuracy by reducing the number of pipetting steps. In addition, the method offers an additional tool for single-cell microbiology. The single cell time-to-detection times have been used as an important criterion for the physiological state of bacterial cells after sublethal stress, and htMPNs support the acquisition of such data with an unprecedented number of cells. In particular, htMPN provides an anaerobic environment and enables a long incubation time to increase the recovery rate of sublethally injured cells. Given its reproducibility and reliability, our approach can potentially be applied to quantify viable cells in samples from environmental, clinical, or food samples to reduce the risk of underestimation of the number of viable bacterial cells.
Collapse
Affiliation(s)
- Zhiying Wang
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| | - Tongbo Zhu
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| | - David J. Simpson
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| | - Michael G. Gänzle
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Nunziata L, Brasca M, Morandi S, Silvetti T. Antibiotic resistance in wild and commercial non-enterococcal Lactic Acid Bacteria and Bifidobacteria strains of dairy origin: An update. Food Microbiol 2022; 104:103999. [DOI: 10.1016/j.fm.2022.103999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 12/19/2022]
|
11
|
Akpınar Kankaya D, Tuncer Y. Detection of Virulence Factors, Biofilm Formation and Biogenic Amine Production in
Vancomycin‐Resistant
Lactic Acid Bacteria (
VRLAB
) Isolated From Foods of Animal Origin. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Didem Akpınar Kankaya
- Department of Food Technology, Gelendost Vocational School Isparta University of Applied Sciences Isparta Turkey
| | - Yasin Tuncer
- Department of Food Engineering, Faculty of Engineering Süleyman Demirel University Isparta Turkey
| |
Collapse
|
12
|
Oliveira FS, da Silva Rodrigues R, de Carvalho AF, Nero LA. Genomic Analyses of Pediococcus pentosaceus ST65ACC, a Bacteriocinogenic Strain Isolated from Artisanal Raw-Milk Cheese. Probiotics Antimicrob Proteins 2022; 15:630-645. [PMID: 34984631 DOI: 10.1007/s12602-021-09894-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
Pediococcus pentosaceus ST65ACC was obtained from a Brazilian artisanal cheese (BAC) and characterized as bacteriocinogenic. This strain presented beneficial properties in previous studies, indicating its potential as a probiotic candidate. In this study, we aimed to carry out a genetic characterization based on whole-genome sequencing (WGS), including taxonomy, biotechnological properties, bacteriocin clusters and safety-related genes. WGS was performed using the Illumina MiSeq platform and the genome was annotated with the Prokaryotic Genome Annotation (Prokka). P. pentosaceus ST65ACC taxonomy was investigated and bacteriocin genes clusters were identified by BAGEL4, metabolic pathways were analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG) and safety-related genes were checked. P. pentosaceus ST65ACC had a total draft genome size of 1,933,194 bp with a GC content of 37.00%, and encoded 1950 protein coding sequences (CDSs), 6 rRNA, 55 tRNA, 1 tmRNA and no plasmids were detected. The analysis revealed absence of a CRISPR/Cas system, bacteriocin gene clusters for pediocin PA-1/AcH and penocin-A were identified. Genes related to beneficial properties, such as stress adaptation genes and adhesion genes, were identified. Furthermore, genes related to biogenic amines and virulence-related genes were not detected. Genes related to antibiotic resistance were identified, but not in prophage regions. Based on the obtained results, the beneficial potential of P. pentosaceus ST65ACC was confirmed, allowing its characterization as a potential probiotic candidate.
Collapse
Affiliation(s)
- Francielly Soares Oliveira
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG, 36570 900, Brazil.,Inovaleite - Laboratório de Pesquisa Em Leite E Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, MG, 36570 900, Brazil
| | - Rafaela da Silva Rodrigues
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG, 36570 900, Brazil.,Inovaleite - Laboratório de Pesquisa Em Leite E Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, MG, 36570 900, Brazil
| | - Antônio Fernandes de Carvalho
- Inovaleite - Laboratório de Pesquisa Em Leite E Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, MG, 36570 900, Brazil
| | - Luís Augusto Nero
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG, 36570 900, Brazil.
| |
Collapse
|
13
|
Qi Y, Huang L, Zeng Y, Li W, Zhou D, Xie J, Xie J, Tu Q, Deng D, Yin J. Pediococcus pentosaceus: Screening and Application as Probiotics in Food Processing. Front Microbiol 2021; 12:762467. [PMID: 34975787 PMCID: PMC8716948 DOI: 10.3389/fmicb.2021.762467] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Lactic acid bacteria (LAB) are vital probiotics in the food processing industry, which are widely spread in food additives and products, such as meat, milk, and vegetables. Pediococcus pentosaceus (P. pentosaceus), as a kind of LAB, has numerous probiotic effects, mainly including antioxidant, cholesterol-lowering, and immune effects. Recently, the applications in the probiotic- fermentation products have attracted progressively more attentions. However, it is necessary to screen P. pentosaceus with abundant functions from diverse sources due to the limitation about the source and species of P. pentosaceus. This review summarized the screening methods of P. pentosaceus and the exploration methods of probiotic functions in combination with the case study. The screening methods included primary screening and rescreening including gastric acidity resistance, bile resistance, adhesion, antibacterial effects, etc. The application and development prospects of P. pentosaceus were described in detail, and the shortcomings in the practical application of P. pentosaceus were evaluated to make better application of P. pentosaceus in the future.
Collapse
Affiliation(s)
- Yining Qi
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Le Huang
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Yan Zeng
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Wen Li
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Diao Zhou
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | | | - Junyan Xie
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qiang Tu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Qiang Tu,
| | - Dun Deng
- Tangrenshen Group Co., Ltd., Zhuzhou, China
- Dun Deng,
| | - Jia Yin
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
- Jia Yin,
| |
Collapse
|
14
|
Trejo-González L, Gutiérrez-Carrillo AE, Rodríguez-Hernández AI, Del Rocío López-Cuellar M, Chavarría-Hernández N. Bacteriocins Produced by LAB Isolated from Cheeses within the Period 2009-2021: a Review. Probiotics Antimicrob Proteins 2021; 14:238-251. [PMID: 34342858 PMCID: PMC8329406 DOI: 10.1007/s12602-021-09825-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 12/18/2022]
Abstract
A survey is presented concerning original research articles published in well-reputed scientific journals on the isolation of lactic acid bacteria (LAB) from cheeses worldwide, where researchers evaluated the bacteriocin production by such isolates in searching for novel functional peptides that can exhibit potential for biotechnological applications. Seventy-one articles were published in the period of study, with contributions being American (45%), Asiatic (28%), and European (21%), being Brazil-USA-Mexico, Turkey-China, and France-Italy the countries that contributed the most for each said continent, respectively. Most of the isolated LAB belong to the genera Enterococcus (35%), Lactobacillus (30%), Lactococcus (14%), and Pediococcus (10%), coming from soft (64%), hard (27%), and semi-hard (9%) cheeses, predominantly. Also, scholars focused mainly on the food biopreservation (81%) and pharmaceutical field (18%) potential applications.
Collapse
Affiliation(s)
- Lorena Trejo-González
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo. Av, Universidad Km 1, Rancho Universitario, C.P. 43600, Tulancingo, Hidalgo, Mexico
| | - Ana-Estefanía Gutiérrez-Carrillo
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo. Av, Universidad Km 1, Rancho Universitario, C.P. 43600, Tulancingo, Hidalgo, Mexico
| | - Adriana-Inés Rodríguez-Hernández
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo. Av, Universidad Km 1, Rancho Universitario, C.P. 43600, Tulancingo, Hidalgo, Mexico
| | - Ma Del Rocío López-Cuellar
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo. Av, Universidad Km 1, Rancho Universitario, C.P. 43600, Tulancingo, Hidalgo, Mexico
| | - Norberto Chavarría-Hernández
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo. Av, Universidad Km 1, Rancho Universitario, C.P. 43600, Tulancingo, Hidalgo, Mexico.
| |
Collapse
|
15
|
Penna ALB, Gigante ML, Todorov SD. Artisanal Brazilian Cheeses-History, Marketing, Technological and Microbiological Aspects. Foods 2021; 10:foods10071562. [PMID: 34359432 PMCID: PMC8307891 DOI: 10.3390/foods10071562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 01/27/2023] Open
Abstract
This review focused on the historical, marketing, technological, and microbiological characteristics of artisanal Brazilian cheese. Brazilian cheese production was introduced and developed from the influence of immigrants considering the combination of climate, races of the animals, quality and specificity of milk, technological cheese-making processes and environmental microbiology, among other factors. It resulted in cheese products with specific physicochemical, microbiological, and sensory quality, which represent the heritage and identities of the different Brazilian regions. The production of artisanal cheese increased in many Brazilian regions, mainly in the southeast, especially due to the traditional production and innovative development of new varieties of cheese. The microbiological quality and safety of raw-milk artisanal cheese continues to be a concern and many studies have been focusing on this matter. Special attention needs to be given to the cheeses produced by raw milk, since numerous reports raised concerns related to their microbiological safety. This fact requires attention and the implementation of strict hygiene practices on the production and commercialization, besides appropriate governmental regulations and control. However, more studies on the relationship between technological processes and microbiological properties, which results in a superior culinary quality and safety of artisanal Brazilian cheeses, are needed.
Collapse
Affiliation(s)
- Ana Lucia Barretto Penna
- Department of Food Engineering and Technology, São Paulo State University—UNESP, São José do Rio Preto 15054-000, Brazil;
| | - Mirna Lucia Gigante
- Department of Food Technology, State University of Campinas, UNICAMP, Campinas 13083-862, Brazil;
| | - Svetoslav Dimitrov Todorov
- Department of Food Science and Experimental Nutrition, São Paulo University—USP, São Paulo 05508-000, Brazil
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk 37554, Korea
- Correspondence: ; Tel.: +82-10-3490-3152
| |
Collapse
|
16
|
Characterization of Partially Purified Bacteriocins Produced by Enterococcus faecium Strains Isolated from Soybean Paste Active Against Listeria spp. and Vancomycin-Resistant Enterococci. Microorganisms 2021; 9:microorganisms9051085. [PMID: 34070112 PMCID: PMC8158364 DOI: 10.3390/microorganisms9051085] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Three out of one hundred eighty putative LAB isolates from Korean traditional fermented soybean paste were identified to be unique and bacteriocinogenic strains. Based on phenotypic and 16S rRNA sequencing analysis, selected strains were identified as Enterococcus faecium ST651ea, E. faecium ST7119ea and E. faecium ST7319ea. The bacteriocinogenic properties of the studied strains were evaluated against Listeria monocytogenes ATCC15313, Listeria innocua ATCC33090 and vancomycin-resistant E. faecium VRE19 of clinical origin. The strains E. faecium ST651ea, ST7119ea and ST7319ea expressed bacteriocins with an activity of 12,800 AU/mL, 25,600 AU/mL and 25,600 AU/mL, respectively, recorded against L. monocytogenes ATCC15131. According to the PCR-based screening of bacteriocin-related genes, which was further confirmed through amplicon sequencing, showed that strain E. faecium ST651ea carries entB and entP genes, whereas both E. faecium ST7119ea and ST7319ea strains harbor entA and entB genes. The molecular size of expressed bacteriocins was estimated by tricine-SDS-PAGE showing an approximative protein size of 4.5 kDa. The assessment of the spectrum of activity of bacteriocins ST651ea, ST7119ea and ST7319ea showed strong activity against most of clinical VRE isolates, majority of other Enterococcus spp. and Listeria spp. Bacteriocins ST651ea, ST7119ea and ST7319ea were partially purified by combination of 60% ammonium sulfate precipitation and hydrophobic chromatography on the SepPakC18 column. Challenge test with semi-purified (60% 2-propanol fraction) bacteriocins resulted in a significant reduction of viable cells for all test organisms. Thus, indicating that all the bacteriocins evaluated can be used as potential biocontrol in food and feed industries as well as an alternative treatment for VRE-related infections in both veterinary and clinical settings.
Collapse
|
17
|
Huang J, Li S, Wang Q, Guan X, Qian L, Li J, Zheng Y, Lin B. Pediococcus pentosaceus B49 from human colostrum ameliorates constipation in mice. Food Funct 2021; 11:5607-5620. [PMID: 32525185 DOI: 10.1039/d0fo00208a] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Constipation is a prevalent and burdensome gastrointestinal (GI) disorder that seriously affects the quality of human life. This study evaluated the effects of the P. pentosaceus B49 (from human colostrum) on loperamide (Lop)-induced constipation in mice. Mice were given P. pentosaceus B49 (5 × 109 CFU or 5 × 1010 CFU) by gavage daily for 14 days. The result shows that P. pentosaceus B49 treatment relieved constipation in mice by shortening the defecation time, increasing the GI transit rate and stool production. Compared with the constipation control group, the P. pentosaceus B49-treated groups showed decreased serum levels of inhibitory neurotransmitters (vasoactive intestinal peptide and nitric oxide), increased serum levels of excitatory neurotransmitters (acetylcholinesterase, motilin, and gastrin), and elevated cecal concentration of short chain fatty acids (SCFAs). Analysis of cecal microbiota reveals that P. pentosaceus B49 was colonized in the intestine of constipated mice, and altered the cecal microbiota by increasing beneficial SCFAs-producing bacteria (i.e., Lactobacillus, Ruminococcaceae_UCG-014, and Bacteroidales_S24-7) and decreasing potential pathogenic bacteria (i.e., Staphylococcus and Helicobacter). Moreover, transcriptome analysis of the colon tissue shows that P. pentosaceus B49 partly normalized the expression of genes related to GI peristalsis (i.e., Ache, Chrm2, Slc18a3, Grp, and Vip), water and electrolyte absorption and transport (i.e., Aqp4, Aqp8, and Atp12a), while down-regulating the expression of pro-inflammatory and pro-oncogenic genes (i.e., Lbp, Lgals2, Bcl2, Bcl2l15, Gsdmc2, and Olfm4) in constipated mice. Our findings indicate that P. pentosaceus B49 effectively relieves constipation in mice and is a promising candidate for treating constipation.
Collapse
Affiliation(s)
- Juqing Huang
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, P.R. China. and Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou, 350003, P.R. China
| | - Suyi Li
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, P.R. China
| | - Qi Wang
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, P.R. China. and Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou, 350003, P.R. China
| | - Xuefang Guan
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, P.R. China. and Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou, 350003, P.R. China
| | - Lei Qian
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, P.R. China.
| | - Jie Li
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, P.R. China.
| | - Yi Zheng
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, P.R. China.
| | - Bin Lin
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, P.R. China.
| |
Collapse
|
18
|
Safety evaluation and bacteriocinogenic potential of Pediococcus acidilactici strains isolated from artisanal cheeses. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Jiang S, Cai L, Lv L, Li L. Pediococcus pentosaceus, a future additive or probiotic candidate. Microb Cell Fact 2021; 20:45. [PMID: 33593360 PMCID: PMC7885583 DOI: 10.1186/s12934-021-01537-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Background Pediococcus pentosaceus, a promising strain of lactic acid bacteria (LAB), is gradually attracting attention, leading to a rapid increase in experimental research. Due to increased demand for practical applications of microbes, the functional and harmless P. pentosaceus might be a worthwhile LAB strain for both the food industry and biological applications. Results As an additive, P. pentosaceus improves the taste and nutrition of food, as well as the storage of animal products. Moreover, the antimicrobial abilities of Pediococcus strains are being highlighted. Evidence suggests that bacteriocins or bacteriocin-like substances (BLISs) produced by P. pentosaceus play effective antibacterial roles in the microbial ecosystem. In addition, various strains of P. pentosaceus have been highlighted for probiotic use due to their anti-inflammation, anticancer, antioxidant, detoxification, and lipid-lowering abilities. Conclusions Therefore, it is necessary to continue studying P. pentosaceus for further use. Thorough study of several P. pentosaceus strains should clarify the benefits and drawbacks in the future.
Collapse
Affiliation(s)
- Shiman Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lingzhi Cai
- The Infectious Diseases Department, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
20
|
Behavior of Listeria monocytogenes in the presence or not of intentionally-added lactic acid bacteria during ripening of artisanal Minas semi-hard cheese. Food Microbiol 2020; 91:103545. [DOI: 10.1016/j.fm.2020.103545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 04/26/2020] [Accepted: 05/03/2020] [Indexed: 01/13/2023]
|
21
|
Jutinico‐Shubach A, Gutiérrez‐Cortés C, Suarez H. Antilisterial activity of chitosan‐based edible coating incorporating cell‐free supernatant from
Pediococcus pentosaceus
147 on the preservation of fresh cheese. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Héctor Suarez
- Instituto de Ciencia y Tecnología de Alimentos Universidad Nacional de Colombia Bogotá Colombia
| |
Collapse
|
22
|
Yin H, Ye P, Lei Q, Cheng Y, Yu H, Du J, Pan H, Cao Z. In vitro probiotic properties of Pediococcus pentosaceus L1 and its effects on enterotoxigenic Escherichia coli-induced inflammatory responses in porcine intestinal epithelial cells. Microb Pathog 2020; 144:104163. [PMID: 32194178 DOI: 10.1016/j.micpath.2020.104163] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 01/19/2023]
Abstract
This study aimed to evaluate in vitro probiotic characteristics of Pediococcus pentosaceus strain L1 from pickled radish and investigate its impacts on inflammatory responses in porcine intestinal epithelial cells (IEC) to enterotoxigenic Escherichia coli (ETEC) F4+. The abilities of P. pentosaceus L1 to tolerate gastrointestinal conditions and to antagonize ETEC F4+ growth were determined. Adhesion of P. pentosaceus L1 and its effect on ETEC F4+ adhesion to porcine IPEC-J2 IEC were evaluated. Furthermore, the effects of this strain on proinflammatory gene expression and cytokines/chemokine production in porcine IPEC-J2 IEC induced by ETEC F4+ were determined. P. pentosaceus L1 showed good tolerance to the medium adjusted at pH 2.5 and consequently supplemented with 0.3% oxgall. Reduction of ETEC F4+ growth in co-culture with L1 was found. Effective adhesion of L1 to porcine. IPEC-J2 IEC was observed under these conditions. P. pentosaceus L1 decreased the adhesion of ETEC F4+ to IPEC-J2 IEC and the extent of inhibition of ETEC F4+ adhesion depended on the timing of L1 addition. Further analysis revealed down-regulation of expression of ETEC F4+-induced proinflammatory genes encoding interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-8 (IL-8) in IPEC-J2 IEC. Expression of the genes involved in NF-κB pathway, including RELA and NFKB1, were also repressed, as was production of IL-6, TNF-α, and IL-8. These results indicate that P. pentosaceus L1 may have potential as a probiotic for control of ETEC infection in pigs.
Collapse
Affiliation(s)
- Huajuan Yin
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, North Suburb, Kunming, 650201, People's Republic of China
| | - Pengfei Ye
- College of Food Science and Technology, Yunnan Agricultural University, Heilongtan, North Suburb, Kunming, 650201, People's Republic of China; Biotechnology Department, Qujing Vocational and Technical College, 1308 Taihe Street East, Qilin District, Qujing, 655000, People's Republic of China
| | - Qingzhi Lei
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, North Suburb, Kunming, 650201, People's Republic of China
| | - Yandong Cheng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, North Suburb, Kunming, 650201, People's Republic of China
| | - Hang Yu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, North Suburb, Kunming, 650201, People's Republic of China
| | - Jinjing Du
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, North Suburb, Kunming, 650201, People's Republic of China
| | - Hongbin Pan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, North Suburb, Kunming, 650201, People's Republic of China; Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Heilongtan, North Suburb, Kunming, 650201, People's Republic of China.
| | - Zhenhui Cao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, North Suburb, Kunming, 650201, People's Republic of China; Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Heilongtan, North Suburb, Kunming, 650201, People's Republic of China.
| |
Collapse
|
23
|
Todorov S, Cavicchioli V, Ananieva M, Bivolarski V, Vasileva T, Hinkov A, Todorov D, Shishkov S, Haertlé T, Iliev I, Nero L, Ivanova I. Expression of coagulin A with low cytotoxic activity by
Pediococcus pentosaceus
ST65ACC isolated from raw milk cheese. J Appl Microbiol 2019; 128:458-472. [DOI: 10.1111/jam.14492] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 12/17/2022]
Affiliation(s)
- S.D. Todorov
- Faculdade de Ciências Farmacêuticas Universidade de São Paulo São Paulo Brazil
- Departamento de Veterinária Universidade Federal de Viçosa Viçosa Brazil
| | - V.Q. Cavicchioli
- Departamento de Veterinária Universidade Federal de Viçosa Viçosa Brazil
- Department of Biochemistry and Microbiology Faculty of Biology Plovdiv University Paisii Hilendarski Plovdiv Bulgaria
- Department of General and Applied Microbiology Faculty of Biology Sofia University St. Kliment Ohridski Sofia Bulgaria
| | - M. Ananieva
- Department of General and Applied Microbiology Faculty of Biology Sofia University St. Kliment Ohridski Sofia Bulgaria
| | - V.P. Bivolarski
- Department of Biochemistry and Microbiology Faculty of Biology Plovdiv University Paisii Hilendarski Plovdiv Bulgaria
| | - T.A. Vasileva
- Department of Biochemistry and Microbiology Faculty of Biology Plovdiv University Paisii Hilendarski Plovdiv Bulgaria
| | - A.V. Hinkov
- Laboratory of Virology Faculty of Biology Sofia University St. Kliment Ohridski Sofia Bulgaria
| | - D.G. Todorov
- Laboratory of Virology Faculty of Biology Sofia University St. Kliment Ohridski Sofia Bulgaria
| | - S. Shishkov
- Laboratory of Virology Faculty of Biology Sofia University St. Kliment Ohridski Sofia Bulgaria
| | - T. Haertlé
- Institut National de la Recherche Agronomique UR 1268 Biopolymeres Interactions Assemblages Nantes cedex 3 France
| | - I.N. Iliev
- Department of Biochemistry and Microbiology Faculty of Biology Plovdiv University Paisii Hilendarski Plovdiv Bulgaria
| | - L.A. Nero
- Departamento de Veterinária Universidade Federal de Viçosa Viçosa Brazil
| | - I.V. Ivanova
- Department of General and Applied Microbiology Faculty of Biology Sofia University St. Kliment Ohridski Sofia Bulgaria
| |
Collapse
|
24
|
Cavicchioli VQ, Todorov SD, Iliev I, Ivanova I, Drider D, Nero LA. Physiological and molecular insights of bacteriocin production by Enterococcus hirae ST57ACC from Brazilian artisanal cheese. Braz J Microbiol 2019; 50:369-377. [PMID: 30852798 DOI: 10.1007/s42770-019-00068-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/07/2018] [Indexed: 11/25/2022] Open
Abstract
The bacteriocinogenic Enterococcus hirae ST57ACC recently isolated from a Brazilian artisanal cheese was subjected here to additional analyses in order to evaluate its bacteriocin production and the potential influence of ABC transporter system in its expression. Besides these physiological and molecular aspects, the bacteriocin was evaluated for its cytotoxicity against HT-29. Differences in the inoculum size had no impact on the growth of E. hirae ST57ACC; however, the bacteriocin was only produced after 9 h of growth when the strain was inoculated at 5% or 10% (v/v), with similar levels of bacteriocin production obtained by both conventional growth and batch fermentation. Furthermore, potential expression of ABC transporters corresponding to the bacteriocin transport and sugar metabolism was identified. In terms of adverse effects, when a semi-purified fraction of the bacteriocin and the cell-free supernatant were tested against HT-29, total cell viability was similar to observed on untreated cells, indicating the absence of cytotoxic effect. Based on the obtained results, E. hirae ST57ACC can produce its bacteriocin at industrial level by using bioreactors, its bacteriocin expression is potentially influenced by the ABC transporter system, and no cytotoxic effects were observed on HT-29 cells, indicating its potential use as a bio-preservative.
Collapse
Affiliation(s)
| | - Svetoslav Dimitrov Todorov
- Departamento de Veterinária, Universidade Federal de Viçosa, Campus UFV, Viçosa, MG, 36570-900, Brazil
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
| | - Ilia Iliev
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University, 4 Tzar Asen Str, 4000, Plovdiv, Bulgaria
| | - Iskra Ivanova
- Department of General and Applied Microbiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164, Sofia, Bulgaria
| | - Djamel Drider
- Université de Lille, INRA, Université d'Artois, Université du Littoral-Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000, Lille, France
| | - Luís Augusto Nero
- Departamento de Veterinária, Universidade Federal de Viçosa, Campus UFV, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
25
|
Zommiti M, Bouffartigues E, Maillot O, Barreau M, Szunerits S, Sebei K, Feuilloley M, Connil N, Ferchichi M. In vitro Assessment of the Probiotic Properties and Bacteriocinogenic Potential of Pediococcus pentosaceus MZF16 Isolated From Artisanal Tunisian Meat "Dried Ossban". Front Microbiol 2018; 9:2607. [PMID: 30473681 PMCID: PMC6238632 DOI: 10.3389/fmicb.2018.02607] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022] Open
Abstract
Pediococcus pentosaceus MZF16 has been isolated from artisanal Tunisian meat so called "Dried Ossban," an original ecological niche, and identified by MALDI-TOF mass spectrometry and 16S rDNA sequencing. This bacterium showed a high tolerance to gastric stress conditions, and toward bile salts. P. pentosaceus MZF16 also demonstrated a hydrophobic surface profile (high adhesion to xylene), autoaggregation, and adhesive abilities to the human intestinal Caco-2/TC7 cell line. These properties may help the bacterium colonizing the gut. Furthermore, MZF16 was found to be resistant to gentamycin and chloramphenicol but did not harbor any transferable resistance determinants and/or virulence genes. The data also demonstrated absence of cytotoxicity of this strain. Conversely, P. pentosaceus MZF16 can slightly stimulate the immune system and enhance the intestinal epithelial barrier function. Moreover, this bacterium has been shown to be highly active against Listeria spp. due to bacteriocin production. Characterization of the bacteriocin by PCR amplification, sequencing and bioinformatic analyses revealed that MZF16 produces a bacteriocin 100% identical to coagulin, a pediocin-like inhibitory substance produced by Bacillus coagulans. To our knowledge, this is the first report that highlights the production of a pediocin 100% identical to coagulin in a Pediococcus strain. As coagulin, pediocin MZF16 has the consensus sequence YYGNGVXCXXXXCXVXXXXA (X denotes any amino acid), which confirms its belonging to class IIa bacteriocins, and its suitability to preserve foods from Listeria monocytogenes development. According to these results, P. pentosaceus MZF16 can be proposed as a probiotic and bioprotective agent for fermented foods, including Tunisian dry meat and sausages. Further investigations will aim to study the behavior of this strain in meat products as a component of functional food.
Collapse
Affiliation(s)
- Mohamed Zommiti
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El-Manar, Tunis, Tunisia
| | - Emeline Bouffartigues
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Olivier Maillot
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Magalie Barreau
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, Lille, France
| | - Khaled Sebei
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El-Manar, Tunis, Tunisia
| | - Marc Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Nathalie Connil
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Mounir Ferchichi
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El-Manar, Tunis, Tunisia
- College of Applied Medical Sciences, Clinical Laboratory Department, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|