1
|
Liu H, Liu D, Zhang C, Niu H, Xin X, Yi H, Liu D, Zhang J. Whole-genome analysis, evaluation and regulation of in vitro and in vivo GABA production from Levilactobacillus brevis YSJ3. Int J Food Microbiol 2024; 421:110787. [PMID: 38878704 DOI: 10.1016/j.ijfoodmicro.2024.110787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024]
Abstract
Gamma-aminobutyric acid (GABA) produced by lactic acid bacteria (LAB) is safe and has several health benefits. Levilactobacillus brevis YSJ3 was selected from 110 LAB. It exhibited the highest in vitro GABA production level of 970.10 μg/mL. Whole-genome analysis revealed that L. brevis YSJ3 contained gadR, gadC, gadB and gadA. Furthermore, the Luedeking-Piret model was fitted, which indicated that GABA production was divided into three stages. The gadR 0079, gadC 0080, and gadB 0081 were confirmed to promote GABA synthesis. Moreover, 55 metabolites, particularly those involved in arginine metabolism, were significantly different at 6 and 20 h of cultivation. Notably, L. brevis YSJ3 significantly improved sleep in mice and increased GABA levels in the mice's gut compared with the control group. This suggests that the oral administration of L. brevis YSJ3 improves sleep quality, probably by increasing intestinal GABA levels. Overall, L. brevis YSJ3 was confirmed as a GABA-producing strain in vitro and in vivo, making it a promising probiotic candidate for its application in food and medicine.
Collapse
Affiliation(s)
- Hui Liu
- Institute of Biological Fermentation, Zhejiang Yiming Food Co. Ltd, Wenzhou, 325000, China
| | - Daiyao Liu
- Institute of Food Science, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310016, China; College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Chengcheng Zhang
- Institute of Food Science, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310016, China
| | - Haiyue Niu
- Institute of Food Science, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310016, China
| | - Xiaoting Xin
- Institute of Food Science, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310016, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Daqun Liu
- Institute of Food Science, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310016, China.
| | - Jianming Zhang
- Institute of Food Science, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310016, China.
| |
Collapse
|
2
|
Santos HSDB, Damé-Teixeira N, Nagano MH, Do T, Parolo CCF, Maltz M, Arthur RA. Acid tolerance of Lactobacillus spp. on root carious lesions: A complex and multifaceted response. Arch Oral Biol 2023; 156:105820. [PMID: 37866118 DOI: 10.1016/j.archoralbio.2023.105820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/24/2023] [Accepted: 10/07/2023] [Indexed: 10/24/2023]
Abstract
Lactobacillus spp. are acidogenic and aciduric bacteria and are among the main cariogenic microorganisms associated with the carious process. OBJECTIVE This study aimed to identify genes involved in the acid-tolerance of Lactobacillus spp. and potential functions attributed to these genes within the metatranscriptome of sound root surfaces and carious root surfaces. DESIGN Genomic libraries were built from mRNA isolated from the biofilm samples (10 from sound root and 9 from carious root using Illumina HiSeq 2500). Reads generated by RNA-seq were mapped against 162 oral microbial genomes and genes potentially related to acid tolerance were manually extracted from the Lactobacillus spp. genomes using L. paracasei ATCC 344 as reference genome. The R package DESeq2 was used to calculate the level of differential gene expression between those two clinical conditions. RESULTS Fifteen Lactobacillus spp. genomes were identified and a total of 653 acid tolerance genes were overexpressed in carious root surfaces. Multiple functions, as translation, ribosomal structure and biogenesis, transport of nucleotides and amino acids, are involved in Lactobacillus spp. acid tolerance. Species-specific functions also seem to be related to the fitness of Lactobacillus spp. in acidified environments such as that of the cariogenic biofilm associated with carious root lesions. CONCLUSIONS The response of Lactobacillus spp. to an acidic environment is complex and multifaceted. This finding suggests several possible avenues for further research into the adaptive mechanisms of these bacteria.
Collapse
Affiliation(s)
- Heitor Sales de Barros Santos
- Preventive and Community Dentistry Department, Dental School, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2492, Porto Alegre 90035-003, Brazil
| | - Nailê Damé-Teixeira
- Department of Dentistry, School of Health Sciences, University of Brasilia, Campus Universitario Darcy Ribeiro, 70910-900 Brasilia, Brazil; Division of Oral Biology, School of Dentistry, University of Leeds, Wellcome Trust Brenner Building, St. James' University Hospital, LS9 7TF Leeds, United Kingdom
| | - Martina Hitomi Nagano
- Preventive and Community Dentistry Department, Dental School, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2492, Porto Alegre 90035-003, Brazil
| | - Thuy Do
- Division of Oral Biology, School of Dentistry, University of Leeds, Wellcome Trust Brenner Building, St. James' University Hospital, LS9 7TF Leeds, United Kingdom
| | - Clarissa Cavalcanti Fatturi Parolo
- Preventive and Community Dentistry Department, Dental School, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2492, Porto Alegre 90035-003, Brazil
| | - Marisa Maltz
- Preventive and Community Dentistry Department, Dental School, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2492, Porto Alegre 90035-003, Brazil
| | - Rodrigo Alex Arthur
- Preventive and Community Dentistry Department, Dental School, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2492, Porto Alegre 90035-003, Brazil.
| |
Collapse
|
3
|
Zhang K, Lin C, Zhao S, Wang W, Zhou W, Ru X, Cong H, Yang Q. The role of pH transcription factor Appacc in upregulation of pullulan biosynthesis in Aureobasidium pullulans using potato waste as a substrate. Int J Biol Macromol 2023; 242:124797. [PMID: 37182631 DOI: 10.1016/j.ijbiomac.2023.124797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/13/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
pH is one of the important environmental factors affecting the growth, development and secondary metabolites of fungi. To better utilize potato waste for the production of pullulan by fermentation, in this study, the amino acid sequence and structural domain of pH transcription factor Appacc were analyzed using the bioinformatics methods. Appacc showed three typically conserved zinc finger domains, with the closest homology to Zymoseptoria brevis. The function of Appacc was characterized by ΔAppacc and OEXpacc mutants. The mycelium growth of ΔApacc mutants was inhibited, especially, under alkaline conditions. Furthermore, the pullulan production of ΔAppacc mutant was reduced and the expression of pullulan synthetic genes also decreased. Moreover, the OEXpacc mutant further demonstrated that pacc could regulate the expression of pullulan synthesis genes. The yield of pullulan polysaccharide increased from 13.6 g/L to 17.8 g/L by direct fermentation without changing the pH of potato waste. These results suggest that Appacc played a vital role in the growth of Aureobasidium pullulans and that the production of pullulan from potato waste can be increased by overexpression of pacc gene.
Collapse
Affiliation(s)
- Kai Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Congyu Lin
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shanshan Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Wan Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Wei Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Xin Ru
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Hua Cong
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China.
| | - Qian Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China; State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
4
|
Xing CY, Li GY, Wang Q, Guo JS, Shen Y, Yan P, Fang F, Chen YP. Proteomics reveals the enhancing mechanism for eliminating toxic hydroxylamine from water by nanocompartments containing hydroxylamine oxidase. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129787. [PMID: 36007364 DOI: 10.1016/j.jhazmat.2022.129787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/27/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Hydroxylamine (NH2OH) is a potentially toxic pollutant when it is present in water, as it can damage both bacteria and the human body. It is still difficult to eliminate the toxic NH2OH in water. Here, we showed that the model bacterium (Escherichia coli) with nanocompartments encapsulated with hydroxylamine oxidase (HAO) can remove NH2OH from water. In addition, the removal efficiency of NH2OH by genetically modified bacteria (with HAO-nanocompartments) was 3.87 mg N L-1 h-1, and that of wild-type bacteria (without HAO-nanocompartments) was only 1.86 mg N L-1 h-1. Label-free quantitative proteomics indicated that the nanocompartments containing HAO enhanced bacterial activity by inducing the up-regulation of proteins involved in stress and stimulus responses, and decreased their intracellular NH2OH concentration. Moreover, the synthesis of proteins involved in energy metabolism, gene expression, and other processes in bacterial was enhanced under hydroxylamine stress, and these changes increased the resistance of bacterial to NH2OH. This work can aid our understanding of the toxic effects of NH2OH on bacteria as well as the development of new approaches to eliminate NH2OH in water.
Collapse
Affiliation(s)
- Chong-Yang Xing
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China; Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligence Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Guang-Yi Li
- Shanghai Advanced Research Institute Chinese of Sciences, Shanghai 201210, China
| | - Que Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Yu Shen
- National Base of International Science and Technology Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
5
|
Zhang J, Bu Y, Zhang C, Yi H, Liu D, Jiao J. Development of a Low-Cost and High-Efficiency Culture Medium for Bacteriocin Lac-B23 Production by Lactobacillus plantarum J23. BIOLOGY 2020; 9:E171. [PMID: 32708871 PMCID: PMC7407483 DOI: 10.3390/biology9070171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/27/2020] [Accepted: 07/03/2020] [Indexed: 11/16/2022]
Abstract
At present, De Man, Rogosa and Sharpe (MRS) broth is the medium of choice for promoting bacteriocin production. However, this medium is expensive and not applicable for large-scale production. Therefore, a low-cost and high-efficiency culture medium for bacteriocin Lac-B23 production by Lactobacillus plantarum J23 was developed. First, the effects of the composition of MRS broth on bacteriocin Lac-B23 production and bacterial growth were researched by a one variable at a time approach. Then, a Plackett-Burman design was used to screen significant components for production. Finally, the steepest ascent and central composite designs were used to obtain an optimum medium. The final composition of the modified MRS was much simpler than MRS broth, and the modified MRS contained only glucose, yeast extract, dipotassium phosphate, manganese sulfate monohydrate, Tween 80 and sodium acetate anhydrous. The highest bacteriocin Lac-B23 production reached 2560 activity units (AU)/mL in the modified MRS, which is nine times higher than that in MRS broth (280 AU/mL). Meanwhile, the cost per liter of the modified MRS (8.56 Ren Min Bi (RMB)/L) is 34.70% the cost of MRS broth (13.11 RMB/L), and the cost per arbitrary units of bacteriocin Lac-B23 in the modified MRS is approximately fourteen times more convenient (3.34 RMB/106 AU) than in the MRS broth (46.82 RMB/106 AU).
Collapse
Affiliation(s)
- Jianming Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310016, China; (J.Z.); (C.Z.)
| | - Yushan Bu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China;
| | - Chengcheng Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310016, China; (J.Z.); (C.Z.)
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China;
| | - Daqun Liu
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310016, China; (J.Z.); (C.Z.)
| | - Jingkai Jiao
- State Key Laboratory of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China;
| |
Collapse
|
6
|
Todorov S, Cavicchioli V, Ananieva M, Bivolarski V, Vasileva T, Hinkov A, Todorov D, Shishkov S, Haertlé T, Iliev I, Nero L, Ivanova I. Expression of coagulin A with low cytotoxic activity by
Pediococcus pentosaceus
ST65ACC isolated from raw milk cheese. J Appl Microbiol 2019; 128:458-472. [DOI: 10.1111/jam.14492] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 12/17/2022]
Affiliation(s)
- S.D. Todorov
- Faculdade de Ciências Farmacêuticas Universidade de São Paulo São Paulo Brazil
- Departamento de Veterinária Universidade Federal de Viçosa Viçosa Brazil
| | - V.Q. Cavicchioli
- Departamento de Veterinária Universidade Federal de Viçosa Viçosa Brazil
- Department of Biochemistry and Microbiology Faculty of Biology Plovdiv University Paisii Hilendarski Plovdiv Bulgaria
- Department of General and Applied Microbiology Faculty of Biology Sofia University St. Kliment Ohridski Sofia Bulgaria
| | - M. Ananieva
- Department of General and Applied Microbiology Faculty of Biology Sofia University St. Kliment Ohridski Sofia Bulgaria
| | - V.P. Bivolarski
- Department of Biochemistry and Microbiology Faculty of Biology Plovdiv University Paisii Hilendarski Plovdiv Bulgaria
| | - T.A. Vasileva
- Department of Biochemistry and Microbiology Faculty of Biology Plovdiv University Paisii Hilendarski Plovdiv Bulgaria
| | - A.V. Hinkov
- Laboratory of Virology Faculty of Biology Sofia University St. Kliment Ohridski Sofia Bulgaria
| | - D.G. Todorov
- Laboratory of Virology Faculty of Biology Sofia University St. Kliment Ohridski Sofia Bulgaria
| | - S. Shishkov
- Laboratory of Virology Faculty of Biology Sofia University St. Kliment Ohridski Sofia Bulgaria
| | - T. Haertlé
- Institut National de la Recherche Agronomique UR 1268 Biopolymeres Interactions Assemblages Nantes cedex 3 France
| | - I.N. Iliev
- Department of Biochemistry and Microbiology Faculty of Biology Plovdiv University Paisii Hilendarski Plovdiv Bulgaria
| | - L.A. Nero
- Departamento de Veterinária Universidade Federal de Viçosa Viçosa Brazil
| | - I.V. Ivanova
- Department of General and Applied Microbiology Faculty of Biology Sofia University St. Kliment Ohridski Sofia Bulgaria
| |
Collapse
|