1
|
Du M, Xuan W, Hamblin MR, Huang L. Clinical aPDT's effect on Candida albicans: Antifungal susceptibility, virulence gene expression, and correlation with leukocyte and neutrophil counts. Photodiagnosis Photodyn Ther 2024; 49:104327. [PMID: 39233129 DOI: 10.1016/j.pdpdt.2024.104327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Our previous clinical trial demonstrated that antimicrobial photodynamic therapy (aPDT) with methylene blue (MB) and potassium iodide (KI) effectively killed Candida albicans (C. albicans) in adult AIDS patients with oral candidiasis, regardless of biofilm formation or 25S rDNA genotype. This study evaluated changes in antifungal susceptibility and virulence gene expression in C. albicans before and after aPDT, and explored factors related to clinical aPDT efficacy. METHODS Twenty-one adult AIDS patients with C. albicans oral candidiasis were divided into Group a (400 μM MB, N = 11) and Group b (600 μM MB, N = 10). Both groups received two aPDT treatments, where MB was applied for 5 min, followed by 300 mM KI, and illuminated for 30 min (37.29 J/cm²). C. albicans isolates were collected before and after treatment to assess antifungal susceptibility (fluconazole, itraconazole, flucytosine, amphotericin B) and gene expression (CAT1, HWP1). Peripheral blood tests were analyzed for correlations with aPDT efficacy. RESULTS aPDT reduced minimum inhibitory concentration (MIC) values for amphotericin B, fluconazole, and flucytosine, with significant reductions primarily after the first treatment. MIC reductions differed between groups, with Group a showing greater decreases in flucytosine and fluconazole MICs, and Group b in amphotericin B MICs. No significant changes in CAT1 or HWP1 expression were observed. Clinical efficacy of aPDT negatively correlated with leukocyte and neutrophil levels. CONCLUSIONS aPDT effectively reduces MICs of antifungal drugs against C. albicans isolated from treated patients, particularly after the first treatment. The concentration of MB required to reduce MICs varies among different antifungal drugs. aPDT does not alter CAT1 or HWP1 expression, and its clinical efficacy in eradicating C. albicans is negatively associated with leukocyte and neutrophil levels.
Collapse
Affiliation(s)
- Meixia Du
- Department of Infectious Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Weijun Xuan
- Department of Otorhinolaryngology, Head and Neck Surgery, First Clinical Medical College and Hospital, Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Liyi Huang
- Department of Infectious Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
2
|
Cao L, Tan J, Zhang Z, Lin B, Mu Y, Jiang M, Jiang Y, Huang X, Han L. Discovery of Antifungal Norsesquiterpenoids from a Soil-Derived Streptomyces microflavus: Targeting Biofilm Formation and Synergistic Combination with Amphotericin B against Yeast-like Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8521-8535. [PMID: 38565849 DOI: 10.1021/acs.jafc.3c08707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Thirty-five norsesquiterpenoids were isolated from the fermentation broth of Streptomyces microflavus from the forest soil of Ailaoshan in China. The structures of new compounds (1-5, 10-26) were elucidated by comprehensive spectroscopic analysis including data from experimental and calculated ECD spectra, as well as Mosher's reagent derivatives method. Norsesquiterpenoids showed different levels of antifungal activity with MIC80 values ranging from 25 to 200 μg/mL against Candida albicans, Candida parapsilosis, and Cryptococcus neoformans. The combining isolated norsesquiterpenoids with amphotericin B resulted in a synergistic interaction against test yeast-like fungi with a fractional inhibitory concentration index < 0.5. Compound 33 significantly inhibited biofilm formation and destroyed the preformed biofilm of fungi. Moreover, 33 downregulated the expression of adhesion-related genes HWP1, ALS1, ALS3, ECE1, EAP1, and BCR1 to inhibit the adhesion of C. albicans. Findings from the current study highlight the potential usage of norsesquiterpenoids from soil-derived Streptomyces for antifungal leads discovery.
Collapse
Affiliation(s)
- Lu Cao
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Junfeng Tan
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Zengguang Zhang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Mu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Yi Jiang
- Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, China
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Li Han
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
3
|
Das S, Konwar BK. Influence of connatural factors in shaping vaginal microflora and ensuring its health. Arch Gynecol Obstet 2024; 309:871-886. [PMID: 37676318 DOI: 10.1007/s00404-023-07200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
Vaginal canal (VC) is exposed to the external environment affected by habitual factors like hygiene and sexual behaviour as well as physiological factors like puberty, menstrual cycle, pregnancy, child birth and menopause. Healthy VC harbours beneficial microflora supported by vaginal epithelium and cervical fluid. Connatural antimicrobial peptide (AMPs) of female reproductive tract (FRT) conjunctly with these beneficial microbes provide protection from a large number of infectious diseases. Such infections may either be caused by native microbes of the VC or transitory microbes like bacteria or virus which are not a part of VC microflora. This review highlight's the role of hormones, enzymes, innate immunological factors, epithelial cells and vaginal mucus that support beneficial microbes over infectious ones thus, helping to maintain homeostasis in VC and further protect the FRT. We also discuss the prospective use of vaginal probiotics and AMPs against pathogens which can serve as a potential cure for vaginal infections.
Collapse
Affiliation(s)
- Shreaya Das
- Department of MBBT, Tezpur University, Napaam, Assam, 784028, India.
| | - Bolin K Konwar
- Department of MBBT, Tezpur University, Napaam, Assam, 784028, India
| |
Collapse
|
4
|
David H, Solomon AP. Molecular association of Candida albicans and vulvovaginal candidiasis: focusing on a solution. Front Cell Infect Microbiol 2023; 13:1245808. [PMID: 37900321 PMCID: PMC10611527 DOI: 10.3389/fcimb.2023.1245808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023] Open
Abstract
Candida albicans-mediated vulvovaginal candidiasis (VVC) is a significant challenge in clinical settings, owing to the inefficacy of current antifungals in modulating virulence, development of resistance, and poor penetration into the biofilm matrix. Various predisposition factors are molecular drivers that lead to the dysbiosis of normal microflora of the vagina, upregulation of central metabolic pathways, morphogenesis, hyphal extension, adhesion, invasion, and biofilm formation leading to chronic infection and recurrence. Hence, it is crucial to understand the molecular mechanism behind the virulence pathways driven by those drivers to decode the drug targets. Finding innovative solutions targeting fungal virulence/biofilm may potentiate the antifungals at low concentrations without affecting the recurrence of resistance. With this background, the present review details the critical molecular drivers and associated network of virulence pathways, possible drug targets, target-specific inhibitors, and probable mode of drug delivery to cross the preclinical phase by appropriate in vivo models.
Collapse
Affiliation(s)
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
5
|
Perez-Rodriguez A, Eraso E, Quindós G, Mateo E. Antimicrobial Peptides with Anti-Candida Activity. Int J Mol Sci 2022; 23:ijms23169264. [PMID: 36012523 PMCID: PMC9409312 DOI: 10.3390/ijms23169264] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 02/06/2023] Open
Abstract
Mycoses are accountable for millions of infections yearly worldwide. Invasive candidiasis is the most usual, presenting a high morbidity and mortality. Candida albicans remains the prevalent etiologic agent, but the incidence of other species such as Candida parapsilosis, Candida glabrata and Candida auris keeps increasing. These pathogens frequently show a reduced susceptibility to commonly used antifungal drugs, including polyenes, triazoles and echinocandins, and the incidence of emerging multi-drug-resistant strains of these species continues to increase. Therefore, the need to search for new molecules that target these pathogenic species in a different manner is now more urgent than ever. Nature is an almost endless source of interesting new molecules that could meet this need. Among these molecules, antimicrobial peptides, present in different sources in nature, possess some advantages over conventional antifungal agents, even with their own drawbacks, and are considered as a promising pharmacological option against a wide range of microbial infections. In this review, we describe 20 antimicrobial peptides from different origins that possess an activity against Candida.
Collapse
|
6
|
Hu N, Mo XM, Xu SN, Tang HN, Zhou YH, Li L, Zhou HD. A novel antimicrobial peptide derived from human BPIFA1 protein protects against Candida albicans infection. Innate Immun 2022; 28:67-78. [PMID: 35201913 PMCID: PMC9058375 DOI: 10.1177/17534259221080543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/19/2022] [Accepted: 01/30/2022] [Indexed: 11/15/2022] Open
Abstract
Bactericidal/permeability-increasing fold containing family A, member 1 (BPIFA1) is an innate immunity defense protein. Our previous studies proved its antibacterial and antiviral effects, but its role in fungi remains unknown. The study aimed to identify antifungal peptides (AFP) derived from BPIFA1, and three antimicrobial peptides (AMP1-3) were designed. The antifungal effects were proved by growth inhibition assay. AMP3 activity was confirmed by germ tube growth experiment and XTT assay. Its effects on cell wall and membrane of Candida albicans were assessed by tannic acid and Annexin V-FITC/PI double staining, respectively. Additionally, scanning electron microscope (SEM) and transmission electron microscopy (TEM) were used for morphological and ultrastructural observation. The expression of ALS1, EAP1, and SUN41 was tested by qPCR. Ultimately, three AMPs could fight against C. albicans in vitro, and AMP3 was highly effective. It functioned by destroying the integrity of cell wall and normal structure of cell membrane. It also inhibited biofilm formation of C. albicans. In addition, AMP3 down-regulated the expression of ALS1, EAP1, and SUN41, those are known to be involved in virulence of C. albicans. Altogether, the study reported successful development of a novel AFP, which could be used as a new strategy for antifungal therapy.
Collapse
Affiliation(s)
- Nan Hu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
- Nan Hu and Xi-Ming Mo contribute equally to the paper
| | - Xi-Ming Mo
- Department of clinical laboratory medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
- Nan Hu and Xi-Ming Mo contribute equally to the paper
| | - Shi-Na Xu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hao-Neng Tang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
- Department of clinical laboratory medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Ying-Hui Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Long Li
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hou-De Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
7
|
Lactobacillus iners Cell-Free Supernatant Enhances Biofilm Formation and Hyphal/Pseudohyphal Growth by Candida albicans Vaginal Isolates. Microorganisms 2021; 9:microorganisms9122577. [PMID: 34946178 PMCID: PMC8706969 DOI: 10.3390/microorganisms9122577] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
Candida albicans is a commensal fungus of the vaginal mucosa and the principal etiological agent of vaginal candidiasis. Vaginal dysbiosis has been reported during vulvovaginal candidiasis (VVC), with a progressive decrease in Lactobacillus crispatus population and an increase in L. iners population. To date, the role of L. iners in VVC pathogenesis remains scarcely explored. Herein we investigated the in vitro effect of L. iners cell-free supernatant (CFS) on the ability of C. albicans to form biofilms. Biomass and metabolic activity were measured by crystal violet and XTT assays. Further, light microscopy was performed to determine the effect of L. iners CFS on biofilm cellular morphology. We found that L. iners CFS induced a significant increase in biofilm formation by C. albicans clinical isolates which were categorized as moderate or weak biofilm producers. This effect was associated with an enhancement of hyphal/pseudohyphal growth, and the expression levels of HWP1 and ECE1, which are typical hyphae-associated genes, were upregulated. Overall, these results suggest that L. iners contributes to the pathogenesis of VVC and highlight the complexity of the interaction between C. albicans and vaginal lactobacilli. Understanding these interactions could prove essential for the development of new strategies for treating VVC.
Collapse
|
8
|
Koide T, Tamura M. Effect of diglyceryl dicaprylate on Candida albicans growth and pathogenicity. Biosci Biotechnol Biochem 2021; 85:2334-2342. [PMID: 34508624 DOI: 10.1093/bbb/zbab159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/07/2021] [Indexed: 01/06/2023]
Abstract
The antifungal effect of diglyceryl dicaprylate, one of the emulsifiers used as a food additive, on Candida albicans that is a pathogenic fungus that is predominant in the oral cavity was investigated. This component did not affect C. albicans growth; however, it suppressed some virulence factors in a concentration-dependent manner. Furthermore, the suppression of pathogenic factors, such as biofilm formation, adhesion, highly pathogenic dimorphism, and ability to produce proteolytic enzymes, was due to reduction in mRNA expression levels of genes involved in fungal pathogenicities. From these results, this emulsifier could potentially prevent the development of intraoral and extraoral diseases involving C. albicans and could potentially use in oral care and improvement of quality of life.
Collapse
Affiliation(s)
- Tomojiro Koide
- Department of Food Ingredients Development, Riken Vitamin Co., Ltd., Mihama-ku Chiba-City, Chiba, Japan
| | - Muneaki Tamura
- Department of Microbiology, Nihon University School of Dentistry, Kanda-surugadai Chiyoda-ku, Tokyo, Japan
| |
Collapse
|