1
|
Yin CS, Minh Nguyen TT, Yi EJ, Zheng S, Bellere AD, Zheng Q, Jin X, Kim M, Park S, Oh S, Yi TH. Efficacy of probiotics in hair growth and dandruff control: A systematic review and meta-analysis. Heliyon 2024; 10:e29539. [PMID: 38698995 PMCID: PMC11064082 DOI: 10.1016/j.heliyon.2024.e29539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Background Probiotics are intellectually rewarding for the discovery of their potential as a source of functional food. Investigating the economic and beauty sector dynamics, this study conducted a comprehensive review of scholarly articles to evaluate the capacity of probiotics to promote hair growth and manage dandruff. Methods We used the PRISMA 2020 with Embase, Pubmed, ClinicalTrials.gov, Scopus, and ICTRP databases to investigate studies till May 2023. Meta-analyses utilizing the random effects model were used with odds ratios (OR) and standardized mean differences (SMD). Result Meta-analysis comprised eight randomized clinical trials and preclinical studies. Hair growth analysis found a non-significant improvement in hair count (SMD = 0.32, 95 % CI -0.10 to 0.75) and a significant effect on thickness (SMD = 0.92, 95 % CI 0.47 to 1.36). In preclinical studies, probiotics significantly induced hair follicle count (SMD = 3.24, 95 % CI 0.65 to 5.82) and skin thickness (SMD = 2.32, 95 % CI 0.47 to 4.17). VEGF levels increased significantly (SMD = 2.97, 95 % CI 0.80 to 5.13), while IGF-1 showed a non-significant inducement (SMD = 0.53, 95 % CI -4.40 to 5.45). For dandruff control, two studies demonstrated non-significant improvement in adherent dandruff (OR = 1.31, 95 % CI 0.13-13.65) and a significant increase in free dandruff (OR = 5.39, 95 % CI 1.50-19.43). Hair follicle count, VEGF, IGF-1, and adherent dandruff parameters were recorded with high heterogeneity. For the systematic review, probiotics have shown potential in improving hair growth and controlling dandruff through modulation of the immune pathway and gut-hair axis. The Wnt/β-catenin pathway, IGF-1 pathway, and VEGF are key molecular pathways in regulating hair follicle growth and maintenance. Conclusions This review found significant aspects exemplified by the properties of probiotics related to promoting hair growth and anti-dandruff effect, which serve as a roadmap for further in-depth studies to make it into pilot scales.
Collapse
Affiliation(s)
- Chang-Shik Yin
- Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Trang Thi Minh Nguyen
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Republic of Korea
| | - Eun-Ji Yi
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Republic of Korea
- Snowwhitefactory Co, Ltd., 807 Nonhyeon-ro, Gangnam-gu, Seoul, 06032, Republic of Korea
| | - Shengdao Zheng
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Republic of Korea
- Snowwhitefactory Co, Ltd., 807 Nonhyeon-ro, Gangnam-gu, Seoul, 06032, Republic of Korea
| | - Arce Defeo Bellere
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Republic of Korea
| | - Qiwen Zheng
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Republic of Korea
| | - Xiangji Jin
- Department of Pharmacology, School of Medicine, Kyung Hee University, 23 Kyungheedae-ro, Dong-daemun, Seoul, Republic of Korea
| | - Myeongju Kim
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Republic of Korea
| | - Sejic Park
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Republic of Korea
| | - Sarang Oh
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Republic of Korea
- Snowwhitefactory Co, Ltd., 807 Nonhyeon-ro, Gangnam-gu, Seoul, 06032, Republic of Korea
| | - Tae-Hoo Yi
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Republic of Korea
| |
Collapse
|
2
|
Xiang SL, Xu KZ, Yin LJ, Jia AQ. An Investigation of Quorum Sensing Inhibitors against Bacillus cereus in The Endophytic Fungus Pithomyces sacchari of the Laurencia sp. Mar Drugs 2024; 22:161. [PMID: 38667778 PMCID: PMC11051030 DOI: 10.3390/md22040161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Bacillus cereus, a common food-borne pathogen, forms biofilms and generates virulence factors through a quorum sensing (QS) mechanism. In this study, six compounds (dankasterone A, demethylincisterol A3, zinnimidine, cyclo-(L-Val-L-Pro), cyclo-(L-Ile-L-Pro), and cyclo-(L-Leu-L-Pro)) were isolated from the endophytic fungus Pithomyces sacchari of the Laurencia sp. in the South China Sea. Among them, demethylincisterol A3, a sterol derivative, exhibited strong QS inhibitory activity against B. cereus. The QS inhibitory activity of demethylincisterol A3 was evaluated through experiments. The minimum inhibitory concentration (MIC) of demethylincisterol A3 against B. cereus was 6.25 μg/mL. At sub-MIC concentrations, it significantly decreased biofilm formation, hindered mobility, and diminished the production of protease and hemolysin activity. Moreover, RT-qPCR results demonstrated that demethylincisterol A3 markedly inhibited the expression of QS-related genes (plcR and papR) in B. cereus. The exposure to demethylincisterol A3 resulted in the downregulation of genes (comER, tasA, rpoN, sinR, codY, nheA, hblD, and cytK) associated with biofilm formation, mobility, and virulence factors. Hence, demethylincisterol A3 is a potentially effective compound in the pipeline of innovative antimicrobial therapies.
Collapse
Affiliation(s)
| | | | | | - Ai-Qun Jia
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Chukwudulue UM, Barger N, Dubovis M, Luzzatto Knaan T. Natural Products and Pharmacological Properties of Symbiotic Bacillota (Firmicutes) of Marine Macroalgae. Mar Drugs 2023; 21:569. [PMID: 37999393 PMCID: PMC10672036 DOI: 10.3390/md21110569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
The shift from the terrestrial to the marine environment to discover natural products has given rise to novel bioactive compounds, some of which have been approved for human medicine. However, the ocean, which makes up nearly three-quarters of the Earth's surface, contains macro- and microorganisms whose natural products are yet to be explored. Among these underexplored marine organisms are macroalgae and their symbiotic microbes, such as Bacillota, a phylum of mostly Gram-positive bacteria previously known as Firmicutes. Macroalgae-associated Bacillota often produce chemical compounds that protect them and their hosts from competitive and harmful rivals. Here, we summarised the natural products made by macroalgae-associated Bacillota and their pharmacological properties. We discovered that these Bacillota are efficient producers of novel biologically active molecules. However, only a few macroalgae had been investigated for chemical constituents of their Bacillota: nine brown, five red and one green algae. Thus, Bacillota, especially from the marine habitat, should be investigated for potential pharmaceutical leads. Moreover, additional diverse biological assays for the isolated molecules of macroalgae Bacillota should be implemented to expand their bioactivity profiles, as only antibacterial properties were tested for most compounds.
Collapse
Affiliation(s)
| | | | | | - Tal Luzzatto Knaan
- Department of Marine Biology, The Charney School of Marine Sciences, University of Haifa, Mount Carmel, Haifa 103301, Israel; (U.M.C.); (N.B.); (M.D.)
| |
Collapse
|
4
|
Danilova IV, Vasileva IA, Gilmutdinova AI, Dyadkina IV, Khusnullina LK, Khasanov DI, Rudakova NL, Sharipova MR. Characterization of Bacillus pumilus Strains with Targeted Gene Editing for Antimicrobial Peptides and Sporulation Factor. Microorganisms 2023; 11:1508. [PMID: 37375011 DOI: 10.3390/microorganisms11061508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/25/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Due to their capacity to produce antimicrobial peptides that can prevent the growth of diseases, many Bacillus spp. are beneficial to plants. In this study, we looked into the antagonistic activity of the B. pumilus 3-19 strain and its derivatives following targeted genome editing. Two peptide genes with antibacterial action, bacilysin (bac) and bacteriocin (bact), and the sigF gene, which encodes the sigma factor of sporulation, were specifically inactivated using the CRISPR-Cas9 system in the genome of B. pumilus 3-19. Antibacterial activity against B. cereus and Pantoea brenneri decreased as a result of the inactivation of target genes in the B. pumilus 3-19 genome, with a noticeable effect against bacilysin. The growth dynamics of the culture changed when the bac, bact, and sigF genes were inactivated, and the altered strains had less proteolytic activity. An asporogenic mutant of B. pumilus 3-19 was obtained by inactivating the sigF gene. It has been proven that bacilysin plays a unique part in the development of B. pumilus 3-19's antagonistic action against soil microorganisms.
Collapse
Affiliation(s)
- Iuliia V Danilova
- Research Laboratory "Agrobioengineering", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Iuliia A Vasileva
- Research Laboratory "Agrobioengineering", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Ajgul I Gilmutdinova
- Research Laboratory "Agrobioengineering", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Ilona V Dyadkina
- Research Laboratory "Agrobioengineering", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Liya K Khusnullina
- Research Laboratory "Agrobioengineering", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Damir I Khasanov
- Research Laboratory "Agrobioengineering", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Natalia L Rudakova
- Research Laboratory "Agrobioengineering", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Margarita R Sharipova
- Research Laboratory "Agrobioengineering", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| |
Collapse
|
5
|
Szczepańska M, Blicharz L, Nowaczyk J, Makowska K, Goldust M, Waśkiel-Burnat A, Czuwara J, Samochocki Z, Rudnicka L. The Role of the Cutaneous Mycobiome in Atopic Dermatitis. J Fungi (Basel) 2022; 8:1153. [PMID: 36354920 PMCID: PMC9695942 DOI: 10.3390/jof8111153] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 08/28/2024] Open
Abstract
Atopic dermatitis is a chronic inflammatory skin disorder characterized by eczematous lesions, itch, and a significant deterioration in the quality of life. Recently, microbiome dysbiosis has been implicated in the pathogenesis of atopic dermatitis. Changes in the fungal microbiome (also termed mycobiome) appear to be an important factor influencing the clinical picture of this entity. This review summarizes the available insights into the role of the cutaneous mycobiome in atopic dermatitis and the new research possibilities in this field. The prevalence and characteristics of key fungal species, the most important pathogenesis pathways, as well as classic and emerging therapies of fungal dysbiosis and infections complicating atopic dermatitis, are presented.
Collapse
Affiliation(s)
- Milena Szczepańska
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | - Leszek Blicharz
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | - Joanna Nowaczyk
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | - Karolina Makowska
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | - Mohamad Goldust
- Department of Dermatology, University Medical Center, 55131 Mainz, Germany
| | - Anna Waśkiel-Burnat
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | - Joanna Czuwara
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | - Zbigniew Samochocki
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | - Lidia Rudnicka
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| |
Collapse
|
6
|
Secondary Metabolites from Marine-Derived Bacillus: A Comprehensive Review of Origins, Structures, and Bioactivities. Mar Drugs 2022; 20:md20090567. [PMID: 36135756 PMCID: PMC9501603 DOI: 10.3390/md20090567] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
The marine is a highly complex ecosystem including various microorganisms. Bacillus species is a predominant microbialflora widely distributed in marine ecosystems. This review aims to provide a systematic summary of the newly reported metabolites produced by marine-derived Bacillus species over recent years covering the literature from 2014 to 2021. It describes the structural diversity and biological activities of the reported compounds. Herein, a total of 87 newly reported metabolites are included in this article, among which 49 compounds originated from marine sediments, indicating that marine sediments are majority sources of productive strains of Bacillus species Therefore, marine-derived Bacillus species are a potentially promising source for the discovery of new metabolites.
Collapse
|
7
|
Antimicrobial Bacillus: Metabolites and Their Mode of Action. Antibiotics (Basel) 2022; 11:antibiotics11010088. [PMID: 35052965 PMCID: PMC8772736 DOI: 10.3390/antibiotics11010088] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/12/2022] Open
Abstract
The agricultural industry utilizes antibiotic growth promoters to promote livestock growth and health. However, the World Health Organization has raised concerns over the ongoing spread of antibiotic resistance transmission in the populace, leading to its subsequent ban in several countries, especially in the European Union. These restrictions have translated into an increase in pathogenic outbreaks in the agricultural industry, highlighting the need for an economically viable, non-toxic, and renewable alternative to antibiotics in livestock. Probiotics inhibit pathogen growth, promote a beneficial microbiota, regulate the immune response of its host, enhance feed conversion to nutrients, and form biofilms that block further infection. Commonly used lactic acid bacteria probiotics are vulnerable to the harsh conditions of the upper gastrointestinal system, leading to novel research using spore-forming bacteria from the genus Bacillus. However, the exact mechanisms behind Bacillus probiotics remain unexplored. This review tackles this issue, by reporting antimicrobial compounds produced from Bacillus strains, their proposed mechanisms of action, and any gaps in the mechanism studies of these compounds. Lastly, this paper explores omics approaches to clarify the mechanisms behind Bacillus probiotics.
Collapse
|
8
|
Tangestani M, Broady P, Varsani A. An investigation of antibacterial activity of New Zealand seaweed-associated marine bacteria. Future Microbiol 2021; 16:1167-1179. [PMID: 34615384 DOI: 10.2217/fmb-2021-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To explore seaweed-associated bacteria as prospective producers of bioactive material with antibacterial properties. Materials & methods: 143 bacterial species were isolated from the surface of 15 New Zealand marine macroalgae. Bacterial extracts obtained using dimethyl sulfoxide and ethyl acetate were screened for antagonistic activities against three antimicrobial susceptibility indicators: Kocuria rhizophila, Staphylococcus epidermidis and Escherichia coli, using well-diffusion method. For selected species, minimum inhibitory concentration was determined, followed by a phylogenetic identification based on 16S rRNA gene sequences. Results: Among all bacteria screened, seven that belonged to the genera Vibrio, Pseudoalteromonas, Psychromonas and Cobetia, showed antagonistic activity against all three indicators. Conclusion: Seaweed-associated bacteria produce bioactive compounds with antimicrobial potential and possible biomedical application in aquatic habitats.
Collapse
Affiliation(s)
- Mehrnoush Tangestani
- College of Engineering, University of Canterbury, Christchurch, 8140, New Zealand
| | - Paul Broady
- School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| | - Arvind Varsani
- The Biodesign Center for Fundamental & Applied Microbiomics, Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA
| |
Collapse
|
9
|
Srinivasan R, Kannappan A, Shi C, Lin X. Marine Bacterial Secondary Metabolites: A Treasure House for Structurally Unique and Effective Antimicrobial Compounds. Mar Drugs 2021; 19:md19100530. [PMID: 34677431 PMCID: PMC8539464 DOI: 10.3390/md19100530] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of antimicrobial resistance reduces the effectiveness of antimicrobial drugs in preventing and treating infectious diseases caused by pathogenic organisms, such as bacteria, fungi, and viruses. Because of the burgeoning growth of microbes with antimicrobial-resistant traits, there is a dire need to identify and develop novel and effective antimicrobial agents to treat infections from antimicrobial-resistant strains. The marine environment is rich in ecological biodiversity and can be regarded as an untapped resource for prospecting novel bioactive compounds. Therefore, exploring the marine environment for antimicrobial agents plays a significant role in drug development and biomedical research. Several earlier scientific investigations have proven that bacterial diversity in the marine environment represents an emerging source of structurally unique and novel antimicrobial agents. There are several reports on marine bacterial secondary metabolites, and many are pharmacologically significant and have enormous promise for developing effective antimicrobial drugs to combat microbial infections in drug-resistant pathogens. In this review, we attempt to summarize published articles from the last twenty-five years (1996–2020) on antimicrobial secondary metabolites from marine bacteria evolved in marine environments, such as marine sediment, water, fauna, and flora.
Collapse
Affiliation(s)
- Ramanathan Srinivasan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (R.S.); (X.L.)
| | - Arunachalam Kannappan
- State Key Laboratory of Microbial Metabolism, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (A.K.); (C.S.)
| | - Chunlei Shi
- State Key Laboratory of Microbial Metabolism, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (A.K.); (C.S.)
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (R.S.); (X.L.)
| |
Collapse
|