1
|
Kowalczyk M, Radziwill-Bienkowska JM, Marć MA, Jastrząb R, Mytych J, Siedlecki P, Szczepankowska AK. Screening for probiotic properties and potential immunogenic effects of lactobacilli strains isolated from various food products. Front Microbiol 2024; 15:1430582. [PMID: 39534506 PMCID: PMC11554495 DOI: 10.3389/fmicb.2024.1430582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Deceleration of disease progression and re-establishment of microbial balance in the gut is often achieved by application of lactobacilli strains. Their beneficial effects are associated with probiotic properties, which may be accompanied by immunomodulatory action at mucosal surfaces. Methods To single out such strains, we screened almost three hundred lactobacilli isolates from eight genera and various food sources for acid and bile salt tolerance, adhesion to mucin as well as hemolytic activity and antibiotic susceptibility. Moreover, the immunomodulatory effects of cell-free supernatant (CFS) fractions of five lactobacilli strains were assessed using an in vitro cell line model. Results and discussion By our rationalized selection approach, we identified thirty-five strains with probiotic potential and biosafety features. Additionally, we showed that CFS from the Lactiplantibacillus L_4 strain downregulates proinflammatory cytokines IL-8 and IL-1β. In contrast, IL-8 expression was found to increase after treatment with CFSs of Lactiplantibacillus L_2 and L_5 and IL-1β was upregulated by CFSs of Lactiplantibacillus L_1 and Lactiplantibacillus L_3. Overall, our result delineate a rational approach of selecting lactobacilli strains for probiotic development to support the gut microbiota equilibrium and reinforce the host immune system.
Collapse
Affiliation(s)
- Magdalena Kowalczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Rafał Jastrząb
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Research and Development Center, Olimp Laboratories, Dębica, Poland
| | - Jennifer Mytych
- Research and Development Center, Olimp Laboratories, Dębica, Poland
| | - Paweł Siedlecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
2
|
Huang F, Zhao Y, Hou Y, Yang Y, Yue B, Zhang X. Unraveling the antimicrobial potential of Lactiplantibacillus plantarum strains TE0907 and TE1809 sourced from Bufo gargarizans: advancing the frontier of probiotic-based therapeutics. Front Microbiol 2024; 15:1347830. [PMID: 38419633 PMCID: PMC10899456 DOI: 10.3389/fmicb.2024.1347830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction In an era increasingly defined by the challenge of antibiotic resistance, this study offers groundbreaking insights into the antibacterial properties of two distinct Lactiplantibacillus plantarum strains, TE0907 and TE1809, hailing from the unique ecosystem of Bufo gargarizans. It uniquely focuses on elucidating the intricate components and mechanisms that empower these strains with their notable antibacterial capabilities. Methods The research employs a multi-omics approach, including agar diffusion tests to assess antibacterial efficacy and adhesion assays with HT-29 cells to understand the preliminary mechanisms. Additionally, gas chromatography-mass spectrometry (GC-MS) is employed to analyze the production of organic acids, notably acetic acid, and whole-genome sequencing is utilized to identify genes linked to the biosynthesis of antibiotics and bacteriocin-coding domains. Results The comparative analysis highlighted the exceptional antibacterial efficacy of strains TE0907 and TE1809, with mean inhibitory zones measured at 14.97 and 15.98 mm, respectively. A pivotal discovery was the significant synthesis of acetic acid in both strains, demonstrated by a robust correlation coefficient (cor ≥ 0.943), linking its abundance to their antimicrobial efficiency. Genomic exploration uncovered a diverse range of elements involved in the biosynthesis of antibiotics similar to tetracycline and vancomycin and potential regions encoding bacteriocins, including Enterolysin and Plantaricin. Conclusion This research illuminates the remarkable antibacterial efficacy and mechanisms intrinsic to L. plantarum strains TE0907 and TE1809, sourced from B. gargarizans. The findings underscore the strains' extensive biochemical and enzymatic armamentarium, offering valuable insights into their role in antagonizing enteric pathogens. These results lay down a comprehensive analytical foundation for the potential clinical deployment of these strains in safeguarding animal gut health, thereby enriching our understanding of the role of probiotic bacteria in the realm of antimicrobial interventions.
Collapse
Affiliation(s)
- Feiyun Huang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Yanni Zhao
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Yusen Hou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Bisong Yue
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiuyue Zhang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Bachtarzi N, Gomri MA, Meradji M, Gil-Cardoso K, Ortega N, Chomiciute G, Del Bas JM, López Q, Martínez V, Kharroub K. In vitro assessment of biofunctional properties of Lactiplantibacillus plantarum strain Jb21-11 and the characterization of its exopolysaccharide. Int Microbiol 2024; 27:239-256. [PMID: 37286917 DOI: 10.1007/s10123-023-00387-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
ABSTACT The microbiota of traditional food provides a rich reservoir of biodiversity to find new strains with interesting features for novel functional food formulation. Therefore, this study aimed to investigate the biofunctional potential of the lactic acid bacteria (LAB) strain Jb21-11 isolated from Jben, a traditional Algerian fresh cheese. This isolate was selected out of a collection of 154 LAB based on its exopolysaccharide (EPS) phenotype and was preliminarily identified by polyphasic characterization as Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum) and its biofunctional properties were then assessed in vitro. The tested strain demonstrated good resistance to gastric juice, acidity around pH 2, and 2% (v/v) bile salts, which are important characteristics for potential biofunctional LAB candidates. It also showed a good production of ropy EPS with 674 mg/L on MRS medium. However, this ability appears to compromise the adhesion of the strain to Caco-2 cells (less than 1%), which according to our results, seems not to be related to autoaggregation and hydrophobicity (44.88 ± 0.028% and 16.59 ± 0.012%). Furthermore, promising antimicrobial activity against three pathogenic bacteria (Escherichia coli, Staphylococcus aureus, and Salmonella) was detected probably due to antimicrobial metabolites excreted during fermentation process into the medium. Moreover, the strain L. plantarum Jb21-11 displayed a therapeutic functionality with both anti-inflammatory and immunomodulatory action using RAW 264.7 cells. The chemical features of the novel ropy Jb21-11-EPS were also investigated revealing the presence of three monosaccharides, namely, mannose, galactose, and glucose, with a molar ratio of 5.42:1.00:4.52 linked together by α- and β-glycosidic bonds, presenting a relatively high molecular weight of 1.08 × 105 Da of interest for a texturing potential. Therefore, the new producing EPS strain Jb21-11 is a promising candidate for use as an adjunct culture for improving the texture of functional food.
Collapse
Affiliation(s)
- Nadia Bachtarzi
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), University of Mentouri Brother's Constantine 1 (UFMC1), Road of Ain El Bey, 25000, Constantine, Algeria.
| | - Mohamed Amine Gomri
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), University of Mentouri Brother's Constantine 1 (UFMC1), Road of Ain El Bey, 25000, Constantine, Algeria
| | - Meriem Meradji
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), University of Mentouri Brother's Constantine 1 (UFMC1), Road of Ain El Bey, 25000, Constantine, Algeria
| | - Katherine Gil-Cardoso
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | - Nàdia Ortega
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | - Gertruda Chomiciute
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | | | - Quiro López
- Creaciones Aromáticas Industriales SA, Cuatrecasas i Arimí, 2, 08192, Sant Quirze del Vallès, Barcelona, Spain
| | - Vanesa Martínez
- Creaciones Aromáticas Industriales SA, Cuatrecasas i Arimí, 2, 08192, Sant Quirze del Vallès, Barcelona, Spain
| | - Karima Kharroub
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), University of Mentouri Brother's Constantine 1 (UFMC1), Road of Ain El Bey, 25000, Constantine, Algeria
| |
Collapse
|
4
|
Rebaza-Cardenas T, Montes-Villanueva ND, Fernández M, Delgado S, Ruas-Madiedo P. Microbiological and physical-chemical characteristics of the Peruvian fermented beverage "Chicha de siete semillas": Towards the selection of strains with acidifying properties. Int J Food Microbiol 2023; 406:110353. [PMID: 37591132 DOI: 10.1016/j.ijfoodmicro.2023.110353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/29/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023]
Abstract
Traditional fermented beverages have been consumed worldwide for centuries. Such is the case of "Chicha de siete semillas" which is originally from the province of Huanta, in Ayacucho, Peru. In this work we have analyzed the chemical composition and bacterial diversity of products manufactured from six producers, who have used different combinations of cereals, pseudocereals, legumes and aromatic herbs, although maize was present in all of them. The fermented beverages had a low pH, mainly due to the production of lactic acid, whereas ethanol was, in general, present in low concentrations. Most of the products were rich in GABA, the content of biogenic amines being very low, as corresponds to a product with a short maturation time (less than 4 days). A metataxonomic analysis revealed that Streptococcaceae and Leuconostocaceae families were dominant in the majority of the beverages, Streptococcus spp. and Leuconostoc spp. being the representative genera, respectively. The result was corroborated by culture-dependent techniques, since these were the most abundant genera isolated and identified in all samples, with Streptococcus macedonicus and Leuconostoc lactis as representative species. In lower proportions other isolates were identified as Lactobacillus delbrueckii, Lactiplantibacillus plantarum, Furfurilactobacillus rossiae, Weissella confusa and Enterococcus faecium. The genetic profile of 26 S. macedonicus isolates was determined by RAPD-PCR and REP-PCR, showing five different patterns distinguishable with the first technique. One representative strain from each genetic pattern was further characterized and used to ferment a maize-based matrix (with saccharose) in order to know their technological potential. All strains were able to ferment the beverage at 30 °C in a short time (about 6 h) reaching a pH below 4.5 and they remained viable after 24 h; the main organic acid contributing to the pH decrease was lactic acid. Therefore, S. macedonicus is a good candidate for being part of a putative starter culture, since it is a species well adapted to this cereal-based food niche.
Collapse
Affiliation(s)
- Teresa Rebaza-Cardenas
- Instituto de Productos Lácteos de Asturias (IPLA), CSIC, Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; Facultad de Ingeniería Agraria, Universidad Católica Sedes Sapientiae (UCSS), Lima, Peru
| | | | - María Fernández
- Instituto de Productos Lácteos de Asturias (IPLA), CSIC, Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain
| | - Susana Delgado
- Instituto de Productos Lácteos de Asturias (IPLA), CSIC, Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain
| | - Patricia Ruas-Madiedo
- Instituto de Productos Lácteos de Asturias (IPLA), CSIC, Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain.
| |
Collapse
|
5
|
Ojeda-Linares CI, Vallejo M, Casas A. Disappearance and survival of fermented beverages in the biosphere reserve Tehuacán-Cuicatlán, Mexico: The cases of Tolonche and Lapo. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2022.1067598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Traditional fermented products are disappearing from the local foodscapes due to social pressures and ecological changes that affect their production; it is therefore crucial to document local knowledge, which is crucial to maintain and recover local biocultural heritage and to contribute to food security. This study aims to document and foster the production of local traditional beverages by registering recipes of fermented beverages in the Tehuacán-Cuicatlán biosphere reserve in central Mexico, a region recognized for its great biocultural diversity. We conducted a search of peer-reviewed literature. Additionally, we included ethnographic research and participatory methods to engage residents in different steps of the production process. We identified five main fermented beverages in the research area, the most common beverages are those produced by agave species which include, mescal, pulque and an almost extinct beverage known as lapo which involves sugar cane as main substrate. We also identified a fermented beverage produced with several cacti fruits known as nochoctli and a traditional a fermented beverage produced with fruits of Schinus molle known as tolonche. We highlight the production of lapo and tolonche since these involved the incorporation of foreign substrates into the region after the Spaniard conquest and to their restricted distribution and almost extinction. The beverages tolonche and lapo are nowadays almost lost and only a few producers still prepare them to follow modified versions of the original recipe. Lapo and tolonche were once important in the research area but almost became extinct until local people started to recently recover them. Traditional fermented beverages in Mexico play an important role in cultural identity and contribute to the local diet; nevertheless, several fermented beverages have not been recorded and have even become extinct. This work is an effort to promote and conserve traditional fermented beverages as valuable biocultural heritage by empowering people to make decisions about the use of locally available resources, which is crucial in times when food systems are highly vulnerable.
Collapse
|