1
|
Duncan R, Mantegazza G, Gargari G, Pierallini E, Russo R, Guglielmetti S. Heyndrickxia coagulans LMG S-24828 Is a Safe Probiotic Strain Capable of Germinating in the Human Gut. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10383-4. [PMID: 39432229 DOI: 10.1007/s12602-024-10383-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Ensuring the viability and efficacy of probiotic microorganisms during manufacturing and gastrointestinal transit remains challenging, particularly for sensitive strains such as certain lactic acid bacteria and bifidobacteria. This has led to increased interest in spore-forming bacteria, such as Heyndrickxia coagulans (formerly Bacillus coagulans), which can endure environmental stresses through their endospore forms. This study presents a comprehensive analysis of the probiotic potential of strain LMG S-24828, originally isolated from healthy human feces. The genomic analysis confirmed the strain's taxonomic placement within the species H. coagulans and revealed no extrachromosomal plasmid DNA, suggesting genetic stability. Safety assessments demonstrated that LMG S-24828 does not produce D-lactate, deconjugate bile salts, or exhibit hemolytic activity, and it lacks transmissible antibiotic resistances. Phenotypic tests showed the strain's metabolic versatility, including its ability to hydrolyze complex carbohydrates and adhere to intestinal epithelial cells. Moreover, LMG S-24828 exhibited robust survival and germination during in vitro and in vivo gastrointestinal simulations, with evidence of significant spore germination in the human gut. These findings suggest that H. coagulans LMG S-24828 possesses several advantageous traits for probiotic applications, warranting further clinical evaluation to confirm its health benefits.
Collapse
Affiliation(s)
- Robin Duncan
- Division of Food Microbiology and Bioprocesses, Department of Food, Environment, and Nutritional Science, Università Degli Studi Di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Giacomo Mantegazza
- Division of Food Microbiology and Bioprocesses, Department of Food, Environment, and Nutritional Science, Università Degli Studi Di Milano, Via Celoria 2, 20133, Milan, Italy
- μbEat Lab, Department of Biotechnology and Biosciences (BtBs), University of Milano-Bicocca, Piazza Della Scienza 4, 20133, Milan, Italy
| | - Giorgio Gargari
- Division of Food Microbiology and Bioprocesses, Department of Food, Environment, and Nutritional Science, Università Degli Studi Di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Elena Pierallini
- μbEat Lab, Department of Biotechnology and Biosciences (BtBs), University of Milano-Bicocca, Piazza Della Scienza 4, 20133, Milan, Italy
| | - Rosario Russo
- Province of Monza and Brianza, Giellepi S.P.A, Via G. Verdi, 41/Q, 20831, Seregno, Italy
| | - Simone Guglielmetti
- μbEat Lab, Department of Biotechnology and Biosciences (BtBs), University of Milano-Bicocca, Piazza Della Scienza 4, 20133, Milan, Italy.
| |
Collapse
|
2
|
Guarner F, Sanders ME, Szajewska H, Cohen H, Eliakim R, Herrera-deGuise C, Karakan T, Merenstein D, Piscoya A, Ramakrishna B, Salminen S, Melberg J. World Gastroenterology Organisation Global Guidelines: Probiotics and Prebiotics. J Clin Gastroenterol 2024; 58:533-553. [PMID: 38885083 DOI: 10.1097/mcg.0000000000002002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 03/03/2024] [Indexed: 06/20/2024]
Affiliation(s)
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Centennial, CO
| | - Hania Szajewska
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | | | | | | | | | | | | | | | | | - Jim Melberg
- World Gastroenterology Organisation, Milwaukee, WI
| |
Collapse
|
3
|
Li Y, Zhang XH, Wang ZK. Microbiota treatment of functional constipation: Current status and future prospects. World J Hepatol 2024; 16:776-783. [PMID: 38818289 PMCID: PMC11135260 DOI: 10.4254/wjh.v16.i5.776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/05/2024] [Accepted: 04/03/2024] [Indexed: 05/22/2024] Open
Abstract
Functional constipation (FC) is a common disorder that is characterized by difficult stool passage, infrequent bowel movement, or both. FC is highly prevalent, recurs often, accompanies severe diseases, and affects quality of life; therefore, safe and effective therapy with long-term benefits is urgently needed. Microbiota treatment has potential value for FC treatment. Microbiota treatments include modulators such as probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT). Some probiotics and prebiotics have been adopted, and the efficacy of other microbiota modulators is being explored. FMT is considered an emerging field because of its curative effects; nevertheless, substantial work must be performed before clinical implementation.
Collapse
Affiliation(s)
- Yan Li
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiao-Han Zhang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- Medical School, Nankai University, Tianjin 300071, China
| | - Zi-Kai Wang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
4
|
Yang J, Guo J, Yang X, Chen J, Bai T, Liu S. Nocebo effects and influencing factors in the randomized clinical trials of chronic constipation: A systematic review and meta-analysis. Neurogastroenterol Motil 2024; 36:e14708. [PMID: 37936549 DOI: 10.1111/nmo.14708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 09/22/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Nocebo effects are unavoidable in randomized clinical trials. We aimed to assess the magnitude of nocebo effects and explore the influencing factors in chronic constipation. METHODS We searched the PubMed, Embase, and Cochrane Library databases up to July 2022. Randomized, placebo-controlled trials investigating interventions in chronic constipation were included. We conducted a random effects meta-analysis of the proportion of adverse events (AEs) in placebo-treated participants and evaluated the effect of trial characteristics on nocebo effects. KEY RESULTS We identified 20,204 studies from the databases, of which 61 were included in the final analysis. The pooled placebo AE rate was 30.41%, and AE-related withdrawal rate was 1.53%. The most commonly reported AEs were headache (5.67%), diarrhea (4.45%), abdominal pain (3.98%), nasopharyngitis (3.39%), nausea (3.36%), and flatulence (2.95%). The placebo AE rate was lower in trials conducted in Asia compared to those in Europe, North America, and international trials. It was also lower in trials diagnosed by Rome III compared to clinician's opinion and Rome II. Additionally, the placebo AE rate was lower in single-center trials compared to multicenter trials, lower in 5-8 weeks therapy compared to 9-12 weeks therapy, lower in participants with FC compared to those with IBS-C and CC, lower in trials with 2 arms compared to 3 arms, and higher in trials with prokinetic drugs compared to secretagogues and laxatives. CONCLUSIONS & INFERENCES The placebo AE rate was 30.41% in patients with chronic constipation. Based on our findings, we recommend that researchers take the nocebo effects into consideration when designing and conducting clinical trials and adopt specific measures to mitigate the negative influence of nocebo effects.
Collapse
Affiliation(s)
- Jingze Yang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinlu Guo
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Yang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Bai
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi Liu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Rathi A, Pagare R. Efficacy and Safety of Bacillus coagulans LBSC in Drug Induced Constipation Associated With Functional Gastrointestinal Disorder: A Double-Blind, Randomized, Interventional, Parallel, Controlled Trial a Clinical Study on Bacillus coagulans LBSC for Drug Induced Constipation Associated With FGIDs. GLOBAL ADVANCES IN INTEGRATIVE MEDICINE AND HEALTH 2024; 13:27536130241286511. [PMID: 39295947 PMCID: PMC11409293 DOI: 10.1177/27536130241286511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 09/21/2024]
Abstract
Background Active drugs and nutraceutical supplements commonly induce various gastrointestinal illnesses, and constipation is a major gastrointestinal symptom accompanied with functional gastrointestinal disorders. Drug-induced imbalance in gut microbiota may play critical role in such physiological disturbances. Probiotics have been known for resuming normal and healthy gut microbiome. Objective To investigate the clinical efficacy and safety of Bacillus coagulans LBSC in the treatment of drug induced constipation associated with functional gastrointestinal disorder (FGID) symptoms. Methods A prospective, interventional, randomized, double-blind, parallel, multi-arm, controlled trial with 168 patients experiencing drug induced constipation associated with FGID symptoms (DICAWFGID) screened through Rome IV criteria were randomized into 2 arms, i.e. placebo arm (n = 28) and atorvastatin, atenolol, metformin, amitriptyline, and calcium in test arm (n = 28/arm). Patients in both arms received similar dosages (1 g sachet, 3 times a day) for 35 days. The occurrence of constipation using Bristol Stool Form Scale, assessment of degree of constipation on 4-point Likert scale, occurrence of hard stool and degree of stool expulsion on 3-point scale, and defecation frequency were primary endpoints. While, secondary outcomes consisted of the changes in severity of FGID symptoms, visual analogue scale and tolerance to IP, along with reports of adverse events (AEs) and severe adverse events (SAEs). Results There was a significant reduction in occurrence of constipation (≥98.6% and P-value <0.05) in test arm over the placebo arm. Assessment of co-primary endpoints showed significant improvements in degree of stool consistency (P-value 0.0232; CI: 0.1870, 1.1629), borderline significantly superior in degree of stool expulsion (P-value 0.0553; CI: 0.0378, -0.4939), while the other co-primary efficacy endpoints displayed considerably improved advancement (non-significant, P-value ≥0.05). The intra group analysis of symptoms at start of treatment (SOT) and end of treatment (EOT) revealed a significant reduction in scores for occurrence of constipation and degree of constipation, whereas significant improvement in the scores for degree of stool consistency and degree of stool expulsion (P-value <0.001) after the intervention period. In secondary endpoints, the processed responses clearly signified a considerable positive improvement (non-significant, P-value ≥0.05) in other symptoms of constipation associated with FGIDs as determined by the changes in the EOT-SOT score. The study data also highlighted the safety of Bacillus coagulans LBSC at the studied dose. No AEs and/or SAEs were documented during the investigation. Conclusion At the studied dose, Bacillus coagulans LBSC was safe for oral consumption and effective in the management of the drug induced constipation associated with FGIDs symptoms.
Collapse
Affiliation(s)
- Ankit Rathi
- Department of Biological Sciences, School of Science, Sandip University, Nashik, Maharashtra, India
| | - Ravikiran Pagare
- Department of Biological Sciences, School of Science, Sandip University, Nashik, Maharashtra, India
| |
Collapse
|
6
|
Application of Weizmannia coagulans in the medical and livestock industry. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01687-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Products enriched with probiotics have always been fashionable. Weizmannia coagulans has become a hot research topic in the academic community due to their multiple functional properties and high resistance to stress, which can retain their activity in a variety of harsh environments. This review aims to evaluate the probiotic effects of different strains of Weizmannia coagulans in animals and humans and to inspire better exploitation of the value of this strain.
Methods
This review summarizes the latest research progress of Weizmannia coagulans from two major applications in animal breeding and human health.
Results
The functional properties of Weizmannia coagulans are extensively recognized. In animals, the strain can promote nutrient absorption, reduce mortality, and enhance the slaughter rate in livestock and poultry. In humans, the strain can be used to treat gastrointestinal disorders, immunomodulation, depressive symptoms, and non-alcoholic fatty liver. Weizmannia coagulans is projected as an ideal substitute for antibiotics and other chemical drugs.
Conclusion
Despite the outstanding functional properties of Weizmannia coagulans, there are numerous strains of Weizmannia coagulans and significant differences between strains in functional and physiological properties. Currently, there are few literature reports on the probiotic mechanism and functional gene identification of Weizmannia coagulans, which is crucial for the commercialization of Weizmannia coagulans and the benefit of human society.
Collapse
|
7
|
Zhou X, Chen Y, Ma X, Yu Y, Yu X, Chen X, Suo H. Efficacy of Bacillus coagulans BC01 on loperamide hydrochloride-induced constipation model in Kunming mice. Front Nutr 2022; 9:964257. [PMID: 36211526 PMCID: PMC9533339 DOI: 10.3389/fnut.2022.964257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
In this study, the laxative effect of Bacillus coagulans BC01 (BC01) in mice was investigated using a functional constipation mouse model. Six-week-old male specific pathogen-free (SPF) Kunming mice were randomly divided into five groups: normal control group (saline), model group (loperamide hydrochloride), drug control group (bisacodyl), BC01 low-dose group (4.0 × 108 CFU/mL) and BC01 high-dose group (4.0 × 109 CFU/mL). Except for the normal group, the functional constipation model was established by administering 0.25 mL of a loperamide hydrochloride suspension (1 mg/mL) twice daily for four consecutive days by oral gavage. After modeling, the BC01 groups were administered 0.25 mL of BC01. The bisacodyl served as a control and was administered orally at a dose of 100 mg/kg, while the other groups were administered 0.25 mL of sterile saline. After 7 days of continuous administration, the experimental mice were again induced by loperamide hydrochloride. During this period, the mechanism of BC01 to improve constipation symptoms in mice was analyzed by measuring the changes in body weight, fecal water content, small intestine propulsion rate, histology of small intestinal tissue sections, fecal microbial diversity, serum indices, as well as mRNA and protein expression levels in the small intestinal tissue. BC01 was found to significantly promote the intestinal propulsion rate and increase the fecal water content in the mice. BC01 could also alleviates constipation by regulating gastrointestinal motility (substance P, motilin, endothelin-1, somatostatin, and vasoactive intestinal peptide), gene expression (c-Kit, SCF, COX-2, NF-κB, iNOS, and eNOS), intestinal inflammation (eNOS, iNOS, NF-κB), and the intestinal microbiota composition in the constipated mice. In addition, the high-dose BC01 treatment had the best preventive effect on constipation. BC01 is a probiotic strain to effectively relieve the adverse effects of constipation.
Collapse
Affiliation(s)
- Xu Zhou
- College of Food Science, Southwest University, Chongqing, China
| | - Yafang Chen
- The First People's Hospital of Kunshan, Suzhou, China
| | - Xin Ma
- Thankcome Biological Science and Technology Suzhou Co., Ltd., Suzhou, China
| | - Yang Yu
- Thankcome Biological Science and Technology Suzhou Co., Ltd., Suzhou, China
| | - Xueping Yu
- Thankcome Biological Science and Technology Suzhou Co., Ltd., Suzhou, China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing, China
- *Correspondence: Huayi Suo
| |
Collapse
|
8
|
Pan R, Wang L, Xu X, Chen Y, Wang H, Wang G, Zhao J, Chen W. Crosstalk between the Gut Microbiome and Colonic Motility in Chronic Constipation: Potential Mechanisms and Microbiota Modulation. Nutrients 2022; 14:nu14183704. [PMID: 36145079 PMCID: PMC9505360 DOI: 10.3390/nu14183704] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic constipation (CC) is a highly prevalent and burdensome gastrointestinal disorder. Accumulating evidence highlights the link between imbalances in the gut microbiome and constipation. However, the mechanisms by which the microbiome and microbial metabolites affect gut movement remain poorly understood. In this review, we discuss recent studies on the alteration in the gut microbiota in patients with CC and the effectiveness of probiotics in treating gut motility disorder. We highlight the mechanisms that explain how the gut microbiome and its metabolism are linked to gut movement and how intestinal microecological interventions may counteract these changes based on the enteric nervous system, the central nervous system, the immune function, and the ability to modify intestinal secretion and the hormonal milieu. In particular, microbiota-based approaches that modulate the levels of short-chain fatty acids and tryptophan catabolites or that target the 5-hydroxytryptamine and Toll-like receptor pathways may hold therapeutic promise. Finally, we discuss the existing limitations of microecological management in treating constipation and suggest feasible directions for future research.
Collapse
Affiliation(s)
- Ruili Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaopeng Xu
- The Department of Clinical Laboratory, Wuxi Xishan People’s Hospital, Wuxi 214105, China
| | - Ying Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haojue Wang
- The Department of of Obstetrics and Gynecology, Wuxi Xishan People’s Hospital, Wuxi 214105, China
- Correspondence: (H.W.); (J.Z.); Tel.: +86-510-8240-2084 (H.W.); +86-510-8591-2155 (J.Z.)
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- Correspondence: (H.W.); (J.Z.); Tel.: +86-510-8240-2084 (H.W.); +86-510-8591-2155 (J.Z.)
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| |
Collapse
|