1
|
Gladysheva IV, Stroganova EA, Chertkov KL, Cherkasov SV. Antimicrobial Activity of Corynebacterium amycolatum ICIS 53 and Corynebacterium amycolatum ICIS 82 Against Urogenital Isolates of Multidrug-Resistant Staphylococcus aureus. Curr Microbiol 2024; 81:426. [PMID: 39448409 DOI: 10.1007/s00284-024-03936-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
Intermicrobial interactions play a key role in the regulation of microbial populations and the colonization of various ecological niches. In the present study, we assessed the effect of cell-free supernatants (CFSs) from the vaginal isolates Corynebacterium amycolatum ICIS 53 and Corynebacterium amycolatum ICIS 82 on urogenital test strain biofilm formation of Staphylococcus aureus. Our studies showed that the CFSs of both C. amycolatum strains significantly reduced biofilm formation and disrupted preformed S. aureus biofilms. Pretreatment with C. amycolatum ICIS 53 or C. amycolatum ICIS 82 CFSs decreased the cell surface hydrophobicity and exopolysaccharide production of all the test S. aureus isolates. The scanning electron microscopy (SEM) results showed that the CFSs of corynebacteria caused the S. aureus biofilms to be small clusters scattered across the surface, there were no fibres or adhesions between cells, and the cell membrane was not damaged. Treatment of preformed biofilms with CFSs from both C. amycolatum strains resulted in a flat, scattered, and unstructured architecture. The S. aureus cell membrane was damaged. GC‒MS analysis of the CFS of C. amycolatum ICIS 53 revealed the presence of 22 chemical compounds, including long-chain fatty alcohols, esters, fatty acids and heterocyclic pyrrolizines and pyrazoles, that, according to the literature, exhibit a wide range of biological activities. The results of the present work provide insight for the study of Corynebacterium microorganisms as a source of multifunctional bioactive compounds, which may find promising applications in the medical, biotechnological and pharmaceutical industries.
Collapse
Affiliation(s)
- Irina V Gladysheva
- Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, Orenburg, Russia.
| | - Elena A Stroganova
- Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, Orenburg, Russia
| | - Konstantin L Chertkov
- Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, Orenburg, Russia
| | - Sergey V Cherkasov
- Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, Orenburg, Russia
| |
Collapse
|
2
|
De La Cruz KF, Townsend EC, Alex Cheong JZ, Salamzade R, Liu A, Sandstrom S, Davila E, Huang L, Xu KH, Wu SY, Meudt JJ, Shanmuganayagam D, Gibson ALF, Kalan LR. The porcine skin microbiome exhibits broad fungal antagonism. Fungal Genet Biol 2024; 173:103898. [PMID: 38815692 DOI: 10.1016/j.fgb.2024.103898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
The skin and its microbiome function to protect the host from pathogen colonization and environmental stressors. In this study, using the Wisconsin Miniature Swine™ model, we characterize the porcine skin fungal and bacterial microbiomes, identify bacterial isolates displaying antifungal activity, and use whole-genome sequencing to identify biosynthetic gene clusters encoding for secondary metabolites that may be responsible for the antagonistic effects on fungi. Through this comprehensive approach of paired microbiome sequencing with culturomics, we report the discovery of novel species of Corynebacterium and Rothia. Further, this study represents the first comprehensive evaluation of the porcine skin mycobiome and the evaluation of bacterial-fungal interactions on this surface. Several diverse bacterial isolates exhibit potent antifungal properties against opportunistic fungal pathogens in vitro. Genomic analysis of inhibitory species revealed a diverse repertoire of uncharacterized biosynthetic gene clusters suggesting a reservoir of novel chemical and biological diversity. Collectively, the porcine skin microbiome represents a potential unique source of novel antifungals.
Collapse
Affiliation(s)
- Karinda F De La Cruz
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Elizabeth C Townsend
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, United States; Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - J Z Alex Cheong
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Rauf Salamzade
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Aiping Liu
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Shelby Sandstrom
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Evelin Davila
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; National Summer Undergraduate Research Project, University of Arizona, Tucson, AZ, United States
| | - Lynda Huang
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Kayla H Xu
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Sherrie Y Wu
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jennifer J Meudt
- Department of Animal & Dairy Sciences, University of Wisconsin, Madison, WI, United States; Center for Biomedical Swine Research & Innovation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Dhanansayan Shanmuganayagam
- Department of Animal & Dairy Sciences, University of Wisconsin, Madison, WI, United States; Center for Biomedical Swine Research & Innovation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Angela L F Gibson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Lindsay R Kalan
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada; David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
3
|
Ortiz Moyano R, Dentice Maidana S, Imamura Y, Elean M, Namai F, Suda Y, Nishiyama K, Melnikov V, Kitazawa H, Villena J. Antagonistic Effects of Corynebacterium pseudodiphtheriticum 090104 on Respiratory Pathogens. Microorganisms 2024; 12:1295. [PMID: 39065064 PMCID: PMC11278748 DOI: 10.3390/microorganisms12071295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/04/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
In previous studies, it was demonstrated that Corynebacterium pseudodiphtheriticum 090104, isolated from the human nasopharynx, modulates respiratory immunity, improving protection against infections. Here, the antagonistic effect of the 090104 strain on respiratory pathogens, including Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii, was explored. In a series of in vitro studies, the capacity of C. pseudodiphtheriticum 090104, its bacterium-like particles, and its culture supernatants to coaggregate, inhibit the growth, and change the virulent phenotype of pathogenic bacteria was evaluated. The results showed that the 090104 strain was able to exert a bacteriostatic effect on K. pneumoniae and S. pneumoniae growth. In addition, C. pseudodiphtheriticum 090104 coaggregated, inhibited biofilm formation, and induced phenotypic changes in all the respiratory pathogens evaluated. In conclusion, this work demonstrated that, in addition to its beneficial effects exerted by host-microbe interactions, C. pseudodiphtheriticum 090104 can enhance protection against respiratory pathogens through its microbe-microbe interactions. The mechanisms involved in such interactions should be evaluated in future research.
Collapse
Affiliation(s)
- Ramiro Ortiz Moyano
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (R.O.M.); (S.D.M.); (M.E.)
| | - Stefania Dentice Maidana
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (R.O.M.); (S.D.M.); (M.E.)
| | - Yoshiya Imamura
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Mariano Elean
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (R.O.M.); (S.D.M.); (M.E.)
| | - Fu Namai
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Yoshihito Suda
- Department of Food, Agriculture and Environment, Miyagi University, Sendai 980-8572, Japan;
| | - Keita Nishiyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Vyacheslav Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (R.O.M.); (S.D.M.); (M.E.)
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (F.N.); (K.N.)
| |
Collapse
|
4
|
Huffines JT, Boone RL, Kiedrowski MR. Temperature influences commensal-pathogen dynamics in a nasal epithelial cell co-culture model. mSphere 2024; 9:e0058923. [PMID: 38179905 PMCID: PMC10826359 DOI: 10.1128/msphere.00589-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
Chronic rhinosinusitis (CRS) is an inflammatory disease of the paranasal sinuses, and microbial dysbiosis associated with CRS is thought to be a key driver of host inflammation that contributes to disease progression. Staphylococcus aureus is a common upper respiratory tract (URT) pathobiont associated with higher carriage rates in CRS populations, where S. aureus-secreted toxins can be identified in CRS tissues. Although many genera of bacteria colonize the URT, few account for the majority of sequencing reads. These include S. aureus and several species belonging to the genus Corynebacterium, including Corynebacterium propinquum and Corynebacterium pseudodiphtheriticum, which are observed at high relative abundance in the healthy URT. Studies have examined bacterial interactions between major microbionts of the URT and S. aureus, but few have done so in the context of a healthy versus diseased URT environment. Here, we examine the role of temperature in commensal, pathogen, and epithelial dynamics using an air-liquid interface cell culture model mimicking the nasal epithelial environment. Healthy URT temperatures change from the nares to the nasopharynx and are increased during disease. Temperatures representative of the healthy URT increase persistence and aggregate formation of commensal C. propinquum and C. pseudodiphtheriticum, reduce S. aureus growth, and lower epithelial cytotoxicity compared to higher temperatures correlating with the diseased CRS sinus. Dual-species colonization revealed species-specific interactions between Corynebacterium species and S. aureus dependent on temperature. Our findings suggest URT mucosal temperature plays a significant role in mediating polymicrobial and host-bacterial interactions that may exacerbate microbial dysbiosis in chronic URT diseases.IMPORTANCEChronic rhinosinusitis is a complex inflammatory disease with a significant healthcare burden. Although presence of S. aureus and microbial dysbiosis are considered mediators of inflammation in CRS, no studies have examined the influence of temperature on S. aureus interactions with the nasal epithelium and the dominant genus of the healthy URT, Corynebacterium. Interactions between Corynebacterium species and S. aureus have been documented in several studies, but none to date have examined how environmental changes in the URT may alter their interactions with the epithelium or each other. This study utilizes a polarized epithelial cell culture model at air-liquid interface to study the colonization and spatial dynamics of S. aureus and clinical isolates of Corynebacterium from people with CRS to characterize the role temperature has in single- and dual-species dynamics on the nasal epithelium.
Collapse
Affiliation(s)
- Joshua T. Huffines
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - RaNashia L. Boone
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Megan R. Kiedrowski
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
5
|
Gafen HB, Liu CC, Ineck NE, Scully CM, Mironovich MA, Taylor CM, Luo M, Leis ML, Scott EM, Carter RT, Hernke DM, Paul NC, Lewin AC. Alterations to the bovine bacterial ocular surface microbiome in the context of infectious bovine keratoconjunctivitis. Anim Microbiome 2023; 5:60. [PMID: 37996960 PMCID: PMC10668498 DOI: 10.1186/s42523-023-00282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Infectious bovine keratoconjunctivitis (IBK) is a common cause of morbidity in cattle, resulting in significant economic losses. This study aimed to characterize the bovine bacterial ocular surface microbiome (OSM) through conjunctival swab samples from Normal eyes and eyes with naturally acquired, active IBK across populations of cattle using a three-part approach, including bacterial culture, relative abundance (RA, 16 S rRNA gene sequencing), and semi-quantitative random forest modeling (real-time polymerase chain reaction (RT-PCR)). RESULTS Conjunctival swab samples were obtained from eyes individually classified as Normal (n = 376) or IBK (n = 228) based on clinical signs. Cattle unaffected by IBK and the unaffected eye in cattle with contralateral IBK were used to obtain Normal eye samples. Moraxella bovis was cultured from similar proportions of IBK (7/228, 3.07%) and Normal eyes (1/159, 0.63%) (p = 0.1481). Moraxella bovoculi was cultured more frequently (p < 0.0001) in IBK (59/228, 25.88%) than Normal (7/159, 4.40%) eyes. RA (via 16 S rRNA gene sequencing) of Actinobacteriota was significantly higher in Normal eyes (p = 0.0045). Corynebacterium variabile and Corynebacterium stationis (Actinobacteriota) were detected at significantly higher RA (p = 0.0008, p = 0.0025 respectively) in Normal eyes. Rothia nasimurium (Actinobacteriota) was detected at significantly higher RA in IBK eyes (p < 0.0001). Alpha-diversity index was not significantly different between IBK and Normal eyes (p > 0.05). Alpha-diversity indices for geographic location (p < 0.001), age (p < 0.0001), sex (p < 0.05) and breed (p < 0.01) and beta-diversity indices for geographic location (p < 0.001), disease status (p < 0.01), age (p < 0.001), sex (p < 0.001) and breed (p < 0.001) were significantly different between groups. Modeling of RT-PCR values reliably categorized the microbiome of IBK and Normal eyes; primers for Moraxella bovoculi, Moraxella bovis, and Staphylococcus spp. were consistently the most significant canonical variables in these models. CONCLUSIONS The results provide further evidence that multiple elements of the bovine bacterial OSM are altered in the context of IBK, indicating the involvement of a variety of bacteria in addition to Moraxella bovis, including Moraxella bovoculi and R. nasimurium, among others. Actinobacteriota RA is altered in IBK, providing possible opportunities for novel therapeutic interventions. While RT-PCR modeling provided limited further support for the involvement of Moraxella bovis in IBK, this was not overtly reflected in culture or RA results. Results also highlight the influence of geographic location and breed type (dairy or beef) on the bovine bacterial OSM. RT-PCR modeling reliably categorized samples as IBK or Normal.
Collapse
Affiliation(s)
- Hannah B Gafen
- Department of Veterinary Clinical Sciences, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Chin-Chi Liu
- Department of Veterinary Clinical Sciences, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Nikole E Ineck
- Department of Veterinary Clinical Sciences, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Clare M Scully
- Department of Veterinary Clinical Sciences, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Melanie A Mironovich
- Department of Veterinary Clinical Sciences, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Christopher M Taylor
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, Louisiana State University, 2020 Gravier St, New Orleans, LA, 70112, USA
| | - Meng Luo
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, Louisiana State University, 2020 Gravier St, New Orleans, LA, 70112, USA
| | - Marina L Leis
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, 52 Campus Dr, Saskatoon, SK, S7N 5B4, Canada
| | - Erin M Scott
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Tower Rd, Ithaca, NY, 14853, USA
| | - Renee T Carter
- Department of Veterinary Clinical Sciences, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - David M Hernke
- Department of Ambulatory Medicine and Theriogenology, Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Rd, North Grafton, MA, 01536, USA
| | - Narayan C Paul
- Texas A&M Veterinary Medical Diagnostic Laboratory, Texas A&M University, 483 Agronomy Rd, College Station, TX, 77843, USA
| | - Andrew C Lewin
- Department of Veterinary Clinical Sciences, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
6
|
Shamsuzzaman M, Dahal RH, Kim S, Kim J. Genome insight and probiotic potential of three novel species of the genus Corynebacterium. Front Microbiol 2023; 14:1225282. [PMID: 37485528 PMCID: PMC10358988 DOI: 10.3389/fmicb.2023.1225282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
Three bacterial strains, B5-R-101T, TA-R-1T, and BL-R-1T, were isolated from the feces of a healthy Korean individual. Cells of these strains were Gram-stain-positive, facultatively anaerobic, oxidase-negative, catalase-positive, rod-shaped, and non-motile. They were able to grow within a temperature range of 10-42°C (optimum, 32-37°C), at a pH range of 2.0-10.0 (optimum, pH 5.5-8.0), and at NaCl concentration of 0.5-10.5% (w/v). All the three strains exhibited 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities ranging from 58 ± 1.62 to 79 ± 1.46% (% inhibition). These strains survived in lower pH (2.0) and in 0.3% bile salt concentration for 4 h. They did not show hemolytic activity and exhibited antimicrobial activity against pathogenic bacteria, such as Escherichia coli, Acinetobacter baumannii, Staphylococcus aureus, and Salmonella enterica. The genomic analysis presented no significant concerns regarding antibiotic resistance or virulence gene content, indicating these strains could be potential probiotic candidates. Phylogenetic analysis showed that they belonged to the genus Corynebacterium, with 98.5-99.0% 16S rRNA gene sequence similarities to other members of the genus. Their major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The abundant cellular fatty acids were C16:0, C18:1ω9c, and anteiso-C19:0. Genomic analysis of these isolates revealed the presence of genes necessary for their survival and growth in the gut environment, such as multi-subunit ATPases, stress response genes, extracellular polymeric substance biosynthesis genes, and antibacterial genes. Furthermore, the genome of each strain possessed biosynthetic gene clusters with antioxidant and antimicrobial potentials, including terpenes, saccharides, polyketides, post-translationally modified peptides (RIPPs), and non-ribosomal peptides (NRPs). In silico DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values were lower than the thresholds to distinguish novel species. Based on phenotypic, genomic, phylogenomic, and phylogenetic analysis, these potential probiotic strains represent novel species within the genus Corynebacterium, for which the names Corynebacterium intestinale sp. nov. (type strain B5-R-101T = CGMCC 1.19408T = KCTC 49761T), Corynebacterium stercoris sp. nov. (type strain TA-R-1T = CGMCC 1.60014T = KCTC 49742T), and Corynebacterium faecium sp. nov. (type strain BL-R-1T = KCTC 49735T = TBRC 17331T) are proposed.
Collapse
Affiliation(s)
- Md Shamsuzzaman
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ram Hari Dahal
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Shukho Kim
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jungmin Kim
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
7
|
Gladysheva IV, Cherkasov SV. Antibiofilm activity of cell-free supernatants of vaginal isolates of Corynebacterium amycolatum against Pseudomonas aeruginosa and Klebsiella pneumoniae. Arch Microbiol 2023; 205:158. [PMID: 37004579 DOI: 10.1007/s00203-023-03498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
Biofilm formation is an important factor in the development of antibiotic resistance and chronic infection. In this study, we demonstrated that the cell-free supernatant of vaginal isolates of C. amycolatum caused a reduction in biofilm formation, destroyed the preformed biofilms, altered the cell surface properties and reduced the production of exopolysaccharides in clinical isolates of P. aeruginosa и Kl. pneumoniae. Microscopic observations showed that P. aeruginosa and Kl. pneumoniae biofilm formed small clusters scattered over the surface after treatment with cell-free supernatant of C. amycolatum ICIS 99, in contrast to the dense aggregates observed in controls, as well as the flat, scattered, and unstructured biofilm architecture after treatment of preformed biofilms cell-free supernatant. The cells were flat and relatively unstructured. Based on these results, we hypothesize that C. amycolatum likely produces secondary metabolites with antimicrobial activity and utilizes a similar mechanism of action to bacteriocins and/or biosurfactants. The data obtained open the prospect of studying the metabolic profile of the cell-free supernatant of C. amycolatum to understand the nature and mechanism of the detected antibacterial action and provide further support for the probiotic potential of C. amycolatum vaginal isolates.
Collapse
Affiliation(s)
- Irina V Gladysheva
- Laboratory of Biomedical Technologies of Institute for Cellular and Intracellular Symbiosis UrB RAS, Orenburg, Russia.
| | - Sergey V Cherkasov
- Laboratory of Biomedical Technologies of Institute for Cellular and Intracellular Symbiosis UrB RAS, Orenburg, Russia
| |
Collapse
|