1
|
Ding W, Cheng Y, Liu X, Zhu Z, Wu L, Gao J, Lei W, Li Y, Zhou X, Wu J, Gao Y, Ling Z, Jiang R. Harnessing the human gut microbiota: an emerging frontier in combatting multidrug-resistant bacteria. Front Immunol 2025; 16:1563450. [PMID: 40165964 PMCID: PMC11955657 DOI: 10.3389/fimmu.2025.1563450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Antimicrobial resistance (AMR) has become a major and escalating global health threat, undermining the effectiveness of current antibiotic and antimicrobial therapies. The rise of multidrug-resistant bacteria has led to increasingly difficult-to-treat infections, resulting in higher morbidity, mortality, and healthcare costs. Tackling this crisis requires the development of novel antimicrobial agents, optimization of current therapeutic strategies, and global initiatives in infection surveillance and control. Recent studies highlight the crucial role of the human gut microbiota in defending against AMR pathogens. A balanced microbiota protects the body through mechanisms such as colonization resistance, positioning it as a key ally in the fight against AMR. In contrast, gut dysbiosis disrupts this defense, thereby facilitating the persistence, colonization, and dissemination of resistant pathogens. This review will explore how gut microbiota influence drug-resistant bacterial infections, its involvement in various types of AMR-related infections, and the potential for novel microbiota-targeted therapies, such as fecal microbiota transplantation, prebiotics, probiotics, phage therapy. Elucidating the interactions between gut microbiota and AMR pathogens will provide critical insights for developing novel therapeutic strategies to prevent and treat AMR infections. While previous reviews have focused on the general impact of the microbiota on human health, this review will specifically look at the latest research on the interactions between the gut microbiota and the evolution and spread of AMR, highlighting potential therapeutic strategies.
Collapse
Affiliation(s)
- Wenwen Ding
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhangcheng Zhu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingbin Wu
- Department of Intensive Care Unit, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Jie Gao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenhui Lei
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Yating Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, United States
- Stanford Diabetes Research Center, Stanford, CA, United States
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Jian Wu
- Department of Clinical Laboratory, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Yongtao Gao
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruilai Jiang
- Department of Intensive Care Unit, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| |
Collapse
|
2
|
Li W, Wang X, Chen K, Zhu Y, Yang G, Jin Y, Wang J. Engineered Bacillus subtilis WB600/ZD prevents Salmonella Infantis-induced intestinal inflammation and alters the colon microbiota in a mouse model. Vet Res 2025; 56:35. [PMID: 39920770 PMCID: PMC11806837 DOI: 10.1186/s13567-024-01438-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/04/2024] [Indexed: 02/09/2025] Open
Abstract
Antimicrobial peptides (AMPs) are instrumental in maintaining intestinal homeostasis and have emerged as potential therapeutic candidates for ameliorating intestinal bacterial infections. However, the intrinsic instability associated with the in vivo delivery of AMPs constitutes a substantial impediment to their therapeutic efficacy in treating infections. In this study, we genetically modified Bacillus subtilis (B. subtilis) WB600 to express Zophobas atratus defensin (ZD), an antimicrobial peptide with broad-spectrum activity isolated from Zophobas atratus, for oral administration. This engineered strain effectively protects against Salmonella Infantis (S. Infantis) infection in mice. Pretreatment with WB600/ZD prevented NF-κB pathway activation induced by S. Infantis infection and increased expression of antioxidant and tight junction proteins, thus alleviating the severity of intestinal inflammation in both the jejunum and ileum (P < 0.01). Moreover, WB600/ZD pretreatment facilitated the growth of beneficial bacteria such as Lachnospiraceae, Butyricicoccus, Eubacterium_xylanophilum, and Clostridia_UCG-014 while decreasing the abundance of pathogenic bacteria such as Escherichia-Shigella and Salmonella (P < 0.05). In conclusion, this study underscores the protective effects of WB600/ZD on S. Infantis-induced intestinal inflammation, suggesting that oral delivery of B. subtilis WB600/ZD may be a promising prophylactic strategy for combating bacterial infections in the intestine.
Collapse
Affiliation(s)
- Wei Li
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, Hainan, China
| | - Xue Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010000, China
| | - Keyuan Chen
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, Hainan, China
| | - Yaohong Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, Hainan, China
| | - Guiyan Yang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, Hainan, China
| | - Yipeng Jin
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, Hainan, China.
| |
Collapse
|
3
|
Geng X, Lin R, Hasegawa Y, Chao L, Shang H, Yang J, Tian W, Ma W, Zhuang M, Li J. Effects of Scallop Mantle Toxin on Intestinal Microflora and Intestinal Barrier Function in Mice. Toxins (Basel) 2024; 16:247. [PMID: 38922142 PMCID: PMC11209270 DOI: 10.3390/toxins16060247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Previous studies have shown that feeding mice with food containing mantle tissue from Japanese scallops results in aggravated liver and kidney damage, ultimately resulting in mortality within weeks. The aim of this study is to evaluate the toxicity of scallop mantle in China's coastal areas and explore the impact of scallop mantle toxins (SMT) on intestinal barrier integrity and gut microbiota in mice. The Illumina MiSeq sequencing of V3-V4 hypervariable regions of 16S ribosomal RNA was employed to study the alterations in gut microbiota in the feces of SMT mice. The results showed that intestinal flora abundance and diversity in the SMT group were decreased. Compared with the control group, significant increases were observed in serum indexes related to liver, intestine, inflammation, and kidney functions among SMT-exposed mice. Accompanied by varying degrees of tissue damage observed within these organs, the beneficial bacteria of Muribaculaceae and Marinifilaceae significantly reduced, while the harmful bacteria of Enterobacteriaceae and Helicobacter were significantly increased. Taken together, this article elucidates the inflammation and glucose metabolism disorder caused by scallop mantle toxin in mice from the angle of gut microbiota and metabolism. SMT can destroy the equilibrium of intestinal flora and damage the intestinal mucosal barrier, which leads to glucose metabolism disorder and intestinal dysfunction and may ultimately bring about systemic toxicity.
Collapse
Affiliation(s)
- Xiong Geng
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China; (X.G.); (R.L.); (H.S.); (W.T.); (W.M.); (M.Z.)
| | - Ran Lin
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China; (X.G.); (R.L.); (H.S.); (W.T.); (W.M.); (M.Z.)
- College of Environmental Technology, Muroran Institute of Technology, Muroran 050-8585, Japan;
| | - Yasushi Hasegawa
- College of Environmental Technology, Muroran Institute of Technology, Muroran 050-8585, Japan;
| | - Luomeng Chao
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China;
| | - Huayan Shang
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China; (X.G.); (R.L.); (H.S.); (W.T.); (W.M.); (M.Z.)
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China;
| | - Jingjing Yang
- Kerqin District Testing Institute for Food and Drug Control, Tongliao 028000, China;
| | - Weina Tian
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China; (X.G.); (R.L.); (H.S.); (W.T.); (W.M.); (M.Z.)
- Kerqin District Testing Institute for Food and Drug Control, Tongliao 028000, China;
| | - Wenting Ma
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China; (X.G.); (R.L.); (H.S.); (W.T.); (W.M.); (M.Z.)
| | - Miaomiao Zhuang
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China; (X.G.); (R.L.); (H.S.); (W.T.); (W.M.); (M.Z.)
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China; (X.G.); (R.L.); (H.S.); (W.T.); (W.M.); (M.Z.)
| |
Collapse
|
4
|
Mei EH, Yao C, Chen YN, Nan SX, Qi SC. Multifunctional role of oral bacteria in the progression of non-alcoholic fatty liver disease. World J Hepatol 2024; 16:688-702. [PMID: 38818294 PMCID: PMC11135273 DOI: 10.4254/wjh.v16.i5.688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Accepted: 04/07/2024] [Indexed: 05/22/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of liver disorders of varying severity, ultimately leading to fibrosis. This spectrum primarily consists of NAFL and non-alcoholic steatohepatitis. The pathogenesis of NAFLD is closely associated with disturbances in the gut microbiota and impairment of the intestinal barrier. Non-gut commensal flora, particularly bacteria, play a pivotal role in the progression of NAFLD. Notably, Porphyromonas gingivalis, a principal bacterium involved in periodontitis, is known to facilitate lipid accumulation, augment immune responses, and induce insulin resistance, thereby exacerbating fibrosis in cases of periodontitis-associated NAFLD. The influence of oral microbiota on NAFLD via the "oral-gut-liver" axis is gaining recognition, offering a novel perspective for NAFLD management through microbial imbalance correction. This review endeavors to encapsulate the intricate roles of oral bacteria in NAFLD and explore underlying mechanisms, emphasizing microbial control strategies as a viable therapeutic avenue for NAFLD.
Collapse
Affiliation(s)
- En-Hua Mei
- Shanghai Medical College, Fudan University, Shanghai 200000, China
- Department of Prothodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
- Shanghai Key Laboratory of Craniomaxiofacial Development and Diseases, Fudan University, Shanghai 200000, China
| | - Chao Yao
- Department of Prothodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
- Shanghai Key Laboratory of Craniomaxiofacial Development and Diseases, Fudan University, Shanghai 200000, China
| | - Yi-Nan Chen
- Shanghai Medical College, Fudan University, Shanghai 200000, China
| | - Shun-Xue Nan
- Shanghai Medical College, Fudan University, Shanghai 200000, China
| | - Sheng-Cai Qi
- Department of Prothodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
- Shanghai Key Laboratory of Craniomaxiofacial Development and Diseases, Fudan University, Shanghai 200000, China.
| |
Collapse
|