1
|
Fattori V, Zaninelli TH, Rasquel-Oliveira FS, Heintz OK, Jain A, Sun L, Seshan ML, Peterse D, Lindholm AE, Anchan RM, Verri WA, Rogers MS. Nociceptor-to-macrophage communication through CGRP/RAMP1 signaling drives endometriosis-associated pain and lesion growth in mice. Sci Transl Med 2024; 16:eadk8230. [PMID: 39504351 DOI: 10.1126/scitranslmed.adk8230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/18/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024]
Abstract
Endometriosis is a debilitating and painful gynecological inflammatory disease affecting up to 15% of women and transgender men. Current treatments are ineffective for a substantial proportion of patients, underscoring the need for additional therapies with long-term benefits. Nociceptors release neuropeptides, such as calcitonin gene-related peptide (CGRP), which are known to shape immunity through neuroimmune communication. Given the comorbidity between endometriosis and migraine and the integral role of immune cells and inflammation in endometriosis, we investigated the role of CGRP-mediated neuroimmune communication in endometriosis. Using samples from eight patients with endometriosis and a nonsurgical mouse model of the disease, we found that mouse and human endometriosis lesions contain both CGRP and its coreceptor, receptor activity modifying protein 1 (RAMP1). In mice, nociceptor ablation reduced pain, monocyte recruitment, and lesion size, suggesting that nociceptor activation and neuropeptide release contribute to endometriosis lesion growth and pain. Mechanistically, CGRP changed the phenotype of macrophages to a pro-endometriosis phenotype. CGRP-stimulated macrophages demonstrated impaired efferocytosis and supported increased endometrial cell growth in a RAMP1-dependent manner. Treatment of lesion-bearing mice with US Food and Drug Administration-approved drugs that block CGRP-RAMP1 signaling reduced mechanical hyperalgesia, spontaneous pain, and lesion size. Together, our data demonstrated the effectiveness and underlying cellular mechanisms of nonhormonal and nonopioid CGRP/RAMP1 blockade in a mouse model of endometriosis, suggesting that targeting this axis may lead to clinical benefit for patients with endometriosis.
Collapse
Affiliation(s)
- Victor Fattori
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Tiago H Zaninelli
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology, and General Pathology, Center of Biological Sciences, Londrina State University, Londrina, PR 86057-970, Brazil
| | - Fernanda S Rasquel-Oliveira
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology, and General Pathology, Center of Biological Sciences, Londrina State University, Londrina, PR 86057-970, Brazil
| | - Olivia K Heintz
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Ashish Jain
- Research Computing, Information Technology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Liang Sun
- Research Computing, Information Technology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Maya L Seshan
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniëlle Peterse
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Anne E Lindholm
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Raymond M Anchan
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology, and General Pathology, Center of Biological Sciences, Londrina State University, Londrina, PR 86057-970, Brazil
| | - Michael S Rogers
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Li Y, Chen Y, Xue Y, Jin J, Xu Y, Zeng W, Liu J, Xie J. Injectable Hydrogel Delivery System with High Drug Loading for Prolonging Local Anesthesia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309482. [PMID: 38477406 PMCID: PMC11200007 DOI: 10.1002/advs.202309482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Peripheral nerve block is performed for precise pain control and lesser side effects after surgery by reducing opioid consumption. Injectable hydrogel delivery systems with high biosafety and moisture content have good clinical application prospects for local anesthetic delivery. However, how to achieve high drug loading and long-term controlled release of water-soluble narcotic drugs remains a big challenge. In this study, heterogeneous microspheres and an injectable gel-matrix composite drug delivery system are designed in two steps. First, heterogeneous hydrogel microspheres loaded with ropivacaine (HMS-ROP) are prepared using a microfluidic chip and in situ alkalization. An injectable self-healing hydrogel matrix (Gel) is then prepared from modified carboxymethylcellulose (CMC-ADH) and oxidized hyaluronic acid (OHA). A local anesthetic delivery system, Gel/HMS-ROP/dexmedetomidine (DEX), with long-term retention and drug release in vivo is prepared by combining HMS-ROP and Gel/DEX. The drug loading of HMS-ROP reached 41.1%, with a drug release time of over 160 h in vitro, and sensory and motor blockade times in vivo of 48 and 36 h, respectively. In summary, the sequential release and synergistic analgesic effects of the two anesthetics are realized using core-shell microspheres, DEX, and an injectable gel, providing a promising strategy for long-acting postoperative pain management.
Collapse
Affiliation(s)
- Yongchun Li
- Department of AnesthesiologySun Yat‐Sen University Cancer CenterState Key Laboratory of Oncology in Southern ChinaGuangdong Provincial Clinical Research Center for CancerGuangzhouGuangdong510060China
| | - You Chen
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐sen UniversityGuangming DistrictShenzhenGuangdong518107China
| | - Yifan Xue
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐sen UniversityGuangming DistrictShenzhenGuangdong518107China
| | - Jinlong Jin
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐sen UniversityGuangming DistrictShenzhenGuangdong518107China
| | - Yixin Xu
- Department of AnesthesiologySun Yat‐Sen University Cancer CenterState Key Laboratory of Oncology in Southern ChinaGuangdong Provincial Clinical Research Center for CancerGuangzhouGuangdong510060China
| | - Weian Zeng
- Department of AnesthesiologySun Yat‐Sen University Cancer CenterState Key Laboratory of Oncology in Southern ChinaGuangdong Provincial Clinical Research Center for CancerGuangzhouGuangdong510060China
| | - Jie Liu
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐sen UniversityGuangming DistrictShenzhenGuangdong518107China
| | - Jingdun Xie
- Department of AnesthesiologySun Yat‐Sen University Cancer CenterState Key Laboratory of Oncology in Southern ChinaGuangdong Provincial Clinical Research Center for CancerGuangzhouGuangdong510060China
| |
Collapse
|
3
|
Berta T, Strong JA, Zhang JM, Ji RR. Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain: an update. Expert Opin Ther Targets 2023; 27:665-678. [PMID: 37574713 PMCID: PMC10530032 DOI: 10.1080/14728222.2023.2247563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/30/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
INTRODUCTION Current treatments for chronic pain are inadequate. Here, we provide an update on the new therapeutic strategies that target dorsal root ganglia (DRGs) in the peripheral nervous system for a better and safer treatment of chronic pain. AREAS COVERED Despite the complex nature of chronic pain and its underlying mechanisms, we do know that changes in the plasticity and modality of neurons in DRGs play a pivotal role. DRG neurons are heterogenous and offer potential pain targets for different therapeutic interventions. We discuss the last advancements of these interventions, which include the use of systemic and local administrations, selective nerve drug delivery, and gene therapy. In particular, we provide updates and further details on the molecular characterization of primary sensory neurons, new analgesics entering the market, and future gene therapy approaches. EXPERT OPINION DRGs and primary sensory neurons are promising targets for chronic pain treatment due to their key role in pain signaling, unique anatomical location, and the potential for different targeted therapeutic interventions.
Collapse
Affiliation(s)
- Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Judith A. Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Steadily mounting evidence of anesthesia-induced developmental neurotoxicity has been a challenge in pediatric anesthesiology. Considering that presently used anesthetics have, in different animal models, been shown to cause lasting behavioral impairments when administered at the peak of brain development, the nagging question, 'Is it time for the development of a new anesthetic' must be pondered. RECENT FINDINGS The emerging 'soft analogs' of intravenous anesthetics aim to overcome the shortcomings of currently available clinical drugs. Remimazolam, a novel ester-analog of midazolam, is a well tolerated intravenous drug with beneficial pharmacological properties. Two novel etomidate analogs currently in development are causing less adrenocortical suppression while maintaining equally favorable hemodynamic stability and rapid metabolism. Quaternary lidocaine derivatives are explored as more potent and longer lasting alternatives to currently available local anesthetics. Xenon, a noble gas with anesthetic properties, is being considered as an anesthetic-sparing adjuvant in pediatric population. Finally, alphaxalone is being reevaluated in a new drug formulation because of its favorable pharmacological properties. SUMMARY Although a number of exciting anesthetic drugs are under development, there is currently no clear evidence to suggest their lack of neurotoxic properties in young brain. Well designed preclinical studies are needed to evaluate their neurotoxic potential.
Collapse
Affiliation(s)
- Nemanja Useinovic
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
5
|
Chen S, Yao W, Wang H, Wang T, Xiao X, Sun G, Yang J, Guan Y, Zhang Z, Xia Z, Li M, Tao Y, Hei Z. Injectable electrospun fiber-hydrogel composite sequentially releasing clonidine and ropivacaine for prolonged and walking regional analgesia. Am J Cancer Res 2022; 12:4904-4921. [PMID: 35836801 PMCID: PMC9274753 DOI: 10.7150/thno.74845] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023] Open
Abstract
Rationale: Peripheral nerve block is a traditional perioperative analgesic method for its precise pain control and low systemic toxicity. However, a single low dose of local anesthetic merely provides a few hours of analgesia, and high dose results in irreversible toxicity, whereas continuous infusion of anesthetics is expensive and complicated. Therefore, it is necessary to develop a long-acting and sensory-selective local anesthetic for safe perioperative analgesia. Methods: An injectable composite comprising ropivacaine-loaded poly (ε-caprolactone) electrospun fiber and clonidine-loaded F127 hydrogel (Fiber-Rop/Gel-Clo composite) was developed for long-acting and walking regional analgesia with barely one dose. The peripheral nerve blockade effect of the composite was evaluated in a rat sciatic nerve block model. Also, the biodegradability and biosafety of the composite was evaluated. Results: The preferentially released Clo from the hydrogel rapidly constricted the peripheral arterial vessels, reducing the blood absorption of Rop and thus enhancing the local Rop accumulation at the injection site. The subsequently sustainable release of Rop from the fiber, significantly prolonged the sciatic nerve block of rats. Remarkably, an amazing sensorimotor segregation effect was achieved, as the sensory blockade (32.0 ± 1.4 h) lasted significantly longer than the motor blockade (20.3 ± 0.9 h). Additionally, the Fiber-Rop/Gel-Clo composite presented good biodegradability and biosafety in vivo. Conclusions: Our designed Fiber-Rop/Gel-Clo composite with minimal invasion, prolonged synergistic analgesia, and strikingly sensorimotor segregation effect, posted a promising prospect for regional long-term walking analgesia in clinical treatment.
Collapse
Affiliation(s)
- Sufang Chen
- Department of Anesthesiology and Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.,Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Weifeng Yao
- Department of Anesthesiology and Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Haixia Wang
- Department of Anesthesiology and Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.,Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Tienan Wang
- Department of Anesthesiology and Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xue Xiao
- Department of Anesthesiology and Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Guoliang Sun
- Department of Anesthesiology and Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Jing Yang
- Department of Anesthesiology and Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yu Guan
- Department of Anesthesiology and Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Zhen Zhang
- Department of Anesthesiology and Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Zhengyuan Xia
- Department of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Mingqiang Li
- Department of Anesthesiology and Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.,Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China.,✉ Corresponding authors: Email addresses: (M. Li), (Y. Tao), (Z. Hei)
| | - Yu Tao
- Department of Anesthesiology and Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.,Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.,✉ Corresponding authors: Email addresses: (M. Li), (Y. Tao), (Z. Hei)
| | - Ziqing Hei
- Department of Anesthesiology and Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.,✉ Corresponding authors: Email addresses: (M. Li), (Y. Tao), (Z. Hei)
| |
Collapse
|
6
|
Cherdchom S, Keawsongsaeng W, Buasorn W, Rimsueb N, Pienpinijtham P, Sereemaspun A, Rojanathanes R, Aramwit P. Development of Eugenol-Embedded Calcium Citrate Nanoparticles as a Local Anesthetic Agent. ACS OMEGA 2021; 6:28880-28889. [PMID: 34746580 PMCID: PMC8567392 DOI: 10.1021/acsomega.1c03831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Eugenol is a major phenolic component derived from clove oil with potential medical applications. Of particular interest, it has been used as a therapeutic agent in topical applications because of its analgesic and local anesthetic properties. However, topical formulations of eugenol produce skin irritation, which limits its clinical applications. One promising strategy to overcome this disadvantage is by using a biocompatible material that could be an appropriate topical vehicle for eugenol. Researchers have recently focused on the development of eugenol-embedded calcium citrate nanoparticles (Eu-CaCit NPs) without adverse effects. The Eu-CaCit NPs were developed as a topical delivery system and their biocompatibility and penetration ability were evaluated. Eu-CaCit NPs at 1.2 mg/mL did not show cytotoxicity effects in human cells. Moreover, the Eu-CaCit NPs presented the ability to penetrate the dermis layer of the human intact skin following 12 h exposure. All the results concluded that Eu-CaCit NPs have shown a potential as a carrier for topical delivery of eugenol. These novel nanoparticles represent a promising alternative for topical application of local anesthetic with natural pain relievers.
Collapse
Affiliation(s)
- Sarocha Cherdchom
- Department
of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai road, Wangmai, Patumwan, Bangkok 10330, Thailand
| | - Wittawat Keawsongsaeng
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Phayathai road, Wangmai, Patumwan, Bangkok 10330, Thailand
| | - Wanida Buasorn
- Department
of Anatomy, Faculty of Medicine, Chulalongkorn
University, Rama 4 Road, Patumwan, Bangkok 10330, Thailand
| | - Natchanon Rimsueb
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Phayathai road, Wangmai, Patumwan, Bangkok 10330, Thailand
| | - Prompong Pienpinijtham
- Sensor
Research Unit (SRU) and National Nanotechnology Center of Advanced
Structural and Functional Nanomaterials, Department of Chemistry,
Faculty of Science, Chulalongkorn University, Phayathai road, Wangmai, Patumwan, Bangkok 10330, Thailand
| | - Amornpun Sereemaspun
- Nanomedicine
Research Unit, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rojrit Rojanathanes
- Center of
Excellence in Materials and Bio-Interfaces, Faculty of Science, Chulalongkorn University, Phayathai road, Wangmai, Patumwan, Bangkok 10330, Thailand
| | - Pornanong Aramwit
- Department
of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center
of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Phayathai road, Wangmai, Patumwan, Bangkok 10330, Thailand
- The
Academy of Science, The Royal Society of
Thailand, Dusit, Bangkok 10330, Thailand
| |
Collapse
|
7
|
Yin Q, Zhang W, Ke B, Liu J, Zhang W. Lido-OH, a Hydroxyl Derivative of Lidocaine, Produced a Similar Local Anesthesia Profile as Lidocaine With Reduced Systemic Toxicities. Front Pharmacol 2021; 12:678437. [PMID: 34603015 PMCID: PMC8481665 DOI: 10.3389/fphar.2021.678437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/15/2021] [Indexed: 02/05/2023] Open
Abstract
Background: lidocaine is one of the most commonly used local anesthetics for the treatment of pain and arrhythmia. However, it could cause systemic toxicities when plasma concentration is raised. To reduce lidocaine’s toxicity, we designed a hydroxyl derivative of lidocaine (lido-OH), and its local anesthesia effects and systemic toxicity in vivo were quantitively investigated. Method: the effectiveness for lido-OH was studied using mouse tail nerve block, rat dorsal subcutaneous infiltration, and rat sciatic nerve block models. The systemic toxicities for lido-OH were evaluated with altered state of consciousness (ASC), arrhythmia, and death in mice. Lidocaine and saline were used as positive and negative control, respectively. The dose-effect relationships were analyzed. Results: the half effective-concentration for lido-OH were 2.1 mg/ml with 95% confident interval (CI95) 1.6–3.1 (lidocaine: 3.1 mg/ml with CI95 2.6–4.3) in tail nerve block, 8.2 mg/ml with CI95 8.0–9.4 (lidocaine: 6.9 mg/ml, CI95 6.8–7.1) in sciatic nerve block, and 5.9 mg/ml with CI95 5.8–6.0 (lidocaine: 3.1 mg/ml, CI95 2.4–4.0) in dorsal subcutaneous anesthesia, respectively. The magnitude and duration of lido-OH were similar with lidocaine. The half effective doses (ED50) of lido-OH for ACS was 45.4 mg/kg with CI95 41.6–48.3 (lidocaine: 3.1 mg/kg, CI95 1.9–2.9), for arrhythmia was 16.0 mg/kg with CI95 15.4–16.8 (lidocaine: 3.0 mg/kg, CI95 2.7–3.3), and for death was 99.4 mg/kg with CI95 75.7–124.1 (lidocaine: 23.1 mg/kg, CI95 22.8–23.4). The therapeutic index for lido-OH and lidocaine were 35.5 and 5.6, respectively. Conclusion: compared with lidocaine, lido-OH produced local anesthesia at similar potency and efficacy, but with significantly reduced systemic toxicities.
Collapse
Affiliation(s)
- Qinqin Yin
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre and Sichuan Engineering Laboratory of Transformation Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Weiyi Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre and Sichuan Engineering Laboratory of Transformation Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Bowen Ke
- Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre and Sichuan Engineering Laboratory of Transformation Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Wensheng Zhang
- Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Wang Q, Zhang Y, Liu J, Zhang W. Quaternary Lidocaine Derivatives: Past, Present, and Future. Drug Des Devel Ther 2021; 15:195-207. [PMID: 33469271 PMCID: PMC7813469 DOI: 10.2147/dddt.s291229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/25/2020] [Indexed: 02/05/2023] Open
Abstract
Local anesthetics have the advantage of complete analgesia with fewer side effects compared to systemic analgesics. However, their clinical use is limited due to their short duration of action. Thus, local anesthetics with fast onset, long duration of action, selective nociceptive block, and low local and systemic toxicity are highly desirable. In the past electrophysiological studies, quaternary lidocaine derivatives (QLDs) showed these characteristics. Here, we review electrophysiological properties of QLDs and their pharmacodynamic characteristics to shed light on potential problems.
Collapse
Affiliation(s)
- Qi Wang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yujun Zhang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jin Liu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Wensheng Zhang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
9
|
Left Ventricular Hypertrophy Increases Susceptibility to Bupivacaine-induced Cardiotoxicity through Overexpression of Transient Receptor Potential Canonical Channels in Rats. Anesthesiology 2020; 133:1077-1092. [PMID: 32915958 DOI: 10.1097/aln.0000000000003554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Local anesthetics, particularly potent long acting ones such as bupivacaine, can cause cardiotoxicity by inhibiting sodium ion channels; however, the impact of left ventricular hypertrophy on the cardiotoxicity and the underlying mechanisms remain undetermined. Transient receptor potential canonical (TRPC) channels are upregulated in left ventricular hypertrophy. Some transient receptor potential channel subtypes have been reported to pass relatively large cations, including protonated local anesthetics; this is known as the "pore phenomenon." The authors hypothesized that bupivacaine-induced cardiotoxicity is more severe in left ventricular hypertrophy due to upregulated TRPC channels. METHODS The authors used a modified transverse aortic constriction model as a left ventricular hypertrophy. Cardiotoxicity caused by bupivacaine was compared between sham and aortic constriction male rats, and the underlying mechanisms were investigated by recording sodium ion channel currents and immunocytochemistry of TRPC protein in cardiomyocytes. RESULTS The time to cardiac arrest by bupivacaine was shorter in aortic constriction rats (n =11) than in sham rats (n = 12) (mean ± SD, 1,302 ± 324 s vs. 1,034 ± 211 s; P = 0.030), regardless of its lower plasma concentration. The half-maximal inhibitory concentrations of bupivacaine toward sodium ion currents were 4.5 and 4.3 μM, which decreased to 3.9 and 2.6 μM in sham and aortic constriction rats, respectively, upon coapplication of 1-oleoyl-2-acetyl-sn-glycerol, a TRPC3 channel activator. In both groups, sodium ion currents were unaffected by QX-314, a positively charged lidocaine derivative, that hardly permeates the cell membrane, but was significantly decreased with QX-314 and 1-oleoyl-2-acetyl-sn-glycerol coapplication (sham: 79 ± 10% of control; P = 0.004; aortic constriction: 47± 27% of control; P = 0.020; n = 5 cells per group). Effects of 1-oleoyl-2-acetyl-sn-glycerol were antagonized by a specific TRPC3 channel inhibitor. CONCLUSIONS Left ventricular hypertrophy exacerbated bupivacaine-induced cardiotoxicity, which could be a consequence of the "pore phenomenon" of TRPC3 channels upregulated in left ventricular hypertrophy. EDITOR’S PERSPECTIVE
Collapse
|
10
|
He Y, Qin L, Huang Y, Ma C. Advances of Nano-Structured Extended-Release Local Anesthetics. NANOSCALE RESEARCH LETTERS 2020; 15:13. [PMID: 31950284 PMCID: PMC6965527 DOI: 10.1186/s11671-019-3241-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/26/2019] [Indexed: 05/08/2023]
Abstract
Extended-release local anesthetics (LAs) have drawn increasing attention with their promising role in improving analgesia and reducing adverse events of LAs. Nano-structured carriers such as liposomes and polymersomes optimally meet the demands of/for extended-release, and have been utilized in drug delivery over decades and showed satisfactory results with extended-release. Based on mature technology of liposomes, EXPAREL, the first approved liposomal LA loaded with bupivacaine, has seen its success in an extended-release form. At the same time, polymersomes has advances over liposomes with complementary profiles, which inspires the emergence of hybrid carriers. This article summarized the recent research successes on nano-structured extended-release LAs, of which liposomal and polymeric are mainstream systems. Furthermore, with continual optimization, drug delivery systems carry properties beyond simple transportation, such as specificity and responsiveness. In the near future, we may achieve targeted delivery and controlled-release properties to satisfy various analgesic requirements.
Collapse
Affiliation(s)
- Yumiao He
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100730, China
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Linan Qin
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100730, China
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Yuguang Huang
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100730, China.
| | - Chao Ma
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100730, China.
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
11
|
Yin Q, Zhang Y, Lv R, Gong D, Ke B, Yang J, Tang L, Zhang W, Zhu T. A Fixed-Dose Combination, QXOH/Levobupivacaine, Produces Long-Acting Local Anesthesia in Rats Without Additional Toxicity. Front Pharmacol 2019; 10:243. [PMID: 30971919 PMCID: PMC6443723 DOI: 10.3389/fphar.2019.00243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/26/2019] [Indexed: 02/05/2023] Open
Abstract
QXOH, a QX314 derivative with longer duration and lesser local toxicity, is a novel local anesthetic in preclinical drug development. Previous studies demonstrated that bupivacaine can prolong the effects of QX314. So, we attempted to combine QXOH with levobupivacaine to shorten the onset time and lengthen the duration. In this study, we investigated the efficacy, local and systemic toxicity in rats. In subcutaneous infiltration anesthesia, the inhibition of cutaneous trunci muscle reflex for QXOH-LB was greater than QXOH and levobupivacaine in the first 8 h (QXOH-LB vs. QXOH, P = 0.004; QXOH-LB vs. LB, P = 0.004). The completely recovery time for QXOH-LB (17.5 ± 2.5 h) was significantly longer than levobupivacaine (9.0 ± 1.3 h, P = 0.034) and QXOH (9.8 ± 0.9 h, P = 0.049). In sciatic nerve block, QXOH-LB produced a rapid onset time, which was obviously shorter than QXOH. For sensory, the time to recovery for QXOH-LB was 17.3 ± 2.6 h, which was statistically longer than 6.0 ± 1.8 h for QXOH (P = 0.027), and 4 h for levobupivacaine (P = 0.001). Meanwhile, the time to motor recovery for QXOH-LB was 7.9 ± 2.8 h, significantly longer than 4 h for levobupivacaine (P = 0.003) but similar to 6.0 ± 1.7 h for QXOH (P = 0.061). In local toxicity, there was no significant difference of histological score regarding muscle and sciatic nerve in QXOH-LB, QXOH, levobupivacaine and saline (P < 0.01). In the combination, the interaction index of LD50 was 1.39, indicating antagonistic interaction between QXOH and levobupivacaine in terms of systemic toxicity. In this study, we demonstrated that QXOH-LB produced cutaneous anesthesia which was 2-fold greater than that produced by QXOH or LB alone, and elicited sciatic nerve block with a potency that was 5- and 3-fold that of LB and QXOH, respectively. Local tissue inflammation by QXOH-LB was mild, similar to that induced by LB. This fixed-dose combination led to an antagonistic interaction between QXOH and LB in terms of systemic toxicity. These results suggested that QXOH-LB induced a long-lasting local anesthesia, likely, avoiding clinically important local and systemic toxicities.
Collapse
|
12
|
Khanal M, Gohil SV, Kuyinu E, Kan HM, Knight BE, Baumbauer KM, Lo KWH, Walker J, Laurencin CT, Nair LS. Injectable nanocomposite analgesic delivery system for musculoskeletal pain management. Acta Biomater 2018; 74:280-290. [PMID: 29803784 PMCID: PMC6020057 DOI: 10.1016/j.actbio.2018.05.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 01/04/2023]
Abstract
Musculoskeletal pain is a major health issue which results from surgical procedures (i.e. total knee and/or hip replacements and rotator cuff repairs), as well as from non-surgical conditions (i.e. sympathetically-mediated pain syndrome and occipital neuralgia). Local anesthetics, opioids or corticosteroids are currently used for the pain management of musculoskeletal conditions. Even though local anesthetics are highly preferred, the need for multiple administration presents significant disadvantages. Development of unique delivery systems that can deliver local anesthetics at the injection site for prolonged time could significantly enhance the therapeutic efficacy and patient comfort. The goal of the present study is to evaluate the efficacy of an injectable local anesthetic nanocomposite carrier to provide sustained analgesic effect. The nanocomposite carrier was developed by encapsulating ropivacaine, a local anesthetic, in lipid nanocapsules (LNC-Rop), and incorporating the nanocapsules in enzymatically crosslinked glycol chitosan (0.3GC) hydrogels. Cryo Scanning Electron Microscopic (Cryo SEM) images showed the ability to distribute the LNCs within the hydrogel without adversely affecting their morphology. The study demonstrated the feasibility to achieve sustained release of lipophilic molecules from the nanocomposite carrier in vitro and in vivo. A rat chronic constriction injury (CCI) pain model was used to evaluate the efficacy of the nanocomposite carrier using thermal paw withdrawal latency (TWL). The nanocomposite carriers loaded with ropivacaine and dexamethasone showed significant improvement in pain response compared to the control groups for at least 7 days. The study demonstrated the clinical potential of these nanocomposite carriers for post-operative and neuropathic pain. STATEMENT OF SIGNIFICANCE Acute or chronic pain associated with musculoskeletal conditions is considered a major health issue, with healthcare costs totaling several billion dollars. The opioid crisis presents a pressing clinical need to develop alternative and effective approaches to treat musculoskeletal pain. The goal of this study was to develop a long-acting injectable anesthetic formulation which can sustain a local anesthetic effect for a prolonged time. This in turn could increase the quality of life and rehabilitation outcome of patients, and decrease opioid consumption. The developed injectable nanocomposite demonstrated the feasibility to achieve prolonged pain relief in a rat chronic constriction injury (CCI) model.
Collapse
Affiliation(s)
- Manakamana Khanal
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, USA; Institute for Regenerative Engineering, The Raymond Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, USA
| | - Shalini V Gohil
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, USA; Institute for Regenerative Engineering, The Raymond Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, USA
| | - Emmanuel Kuyinu
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, USA; Institute for Regenerative Engineering, The Raymond Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, USA
| | - Ho-Man Kan
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, USA; Institute for Regenerative Engineering, The Raymond Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, USA
| | - Brittany E Knight
- Department of Neuroscience, University of Connecticut Health Center, Farmington, USA
| | - Kyle M Baumbauer
- The Center for Advancement in Managing Pain, School of Nursing, University of Connecticut, Storrs, USA; Department of Neuroscience, University of Connecticut Health Center, Farmington, USA
| | - Kevin W-H Lo
- Institute for Regenerative Engineering, The Raymond Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, USA; Department of Medicine, University of Connecticut Health Center, Farmington, USA; Department of Endocrinology, University of Connecticut Health Center, Farmington, USA
| | - Joseph Walker
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, USA
| | - Cato T Laurencin
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, USA; Institute for Regenerative Engineering, The Raymond Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, USA; Department of Material Science and Engineering, Institute of Material Science, University of Connecticut, Storrs, USA; Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, USA
| | - Lakshmi S Nair
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, USA; Institute for Regenerative Engineering, The Raymond Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, USA; Department of Material Science and Engineering, Institute of Material Science, University of Connecticut, Storrs, USA.
| |
Collapse
|
13
|
Dholakia U, Clark-Price SC, Keating SCJ, Stern AW. Anesthetic effects and body weight changes associated with ketamine-xylazine-lidocaine administered to CD-1 mice. PLoS One 2017; 12:e0184911. [PMID: 28910423 PMCID: PMC5599034 DOI: 10.1371/journal.pone.0184911] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/01/2017] [Indexed: 02/06/2023] Open
Abstract
Anesthesia for mice is commonly performed through the injection of parenteral agents via the intraperitoneal (IP) route. Variability in anesthetic sensitivities has been noted in mice resulting in inconsistencies in anesthetic depth and/or mortality. Anesthetic protocols that improve consistency and safety are needed. The objectives of this study were to assess the effects of intraperitoneal (IP) ketamine (95 mg/kg) and xylazine (7 mg/kg) alone or combined with lidocaine at 4, 8, or 16 mg/kg on time to loss (LRR) and return (RRR) of righting reflex, duration of immobilization and loss of pedal withdrawal response (PWR), body weight and histopathology in CD-1 mice. In a prospective, randomized trial, 36 male CD-1 mice, 4–6 weeks of age were randomly assigned to 5 groups: saline (SA, n = 4); ketamine-xylazine (KX, n = 8); ketamine-xylazine-lidocaine 4 mg/kg (KXL4, n = 8); ketamine-xylazine-lidocaine 8 mg/kg (KXL8, n = 8); ketamine-xylazine-lidocaine 16 mg/kg (KXL16, n = 8). Two mice in each group were euthanized at day 2 post-injection and the remaining mice were euthanized at day 11 post-injection. After IP injection, LRR and RRR, duration of immobilization and loss of PWR, body weight and histopathology were evaluated. LRR occurred sooner in mice receiving KXL16 compared with KX, with median (range) times of 78 (62–104) and 107 (91–298) seconds, respectively. Loss of PWR occurred in 1, 5, 4, 6 mice for groups KX, KXL4, KXL8, and KXL16 respectively. Median (range) duration of absent PWR was longer in mice receiving KXL16 at 13 (0–30) minutes, compared to KX at 0 (0–9) minutes. Duration of immobilization and RRR were not different between groups. Weight loss occurred 2 days following anesthesia but was not different between groups. Weight gain was significantly greater in all lidocaine groups 11 days post-injection compared to KX. No mortality or histopathologic abnormalities were observed in any group. Lidocaine administered with ketamine and xylazine shortens the onset of anesthesia in mice and improves anesthetic depth without prolonging recovery time.
Collapse
Affiliation(s)
- Urshulaa Dholakia
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Stuart C. Clark-Price
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| | - Stephanie C. J. Keating
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Adam W. Stern
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
14
|
Zhang Y, Gong D, Zheng Q, Liu J, Zhang W. LC-MS/MS method for preclinical pharmacokinetic study of QX-OH, a novel long-acting local anesthetic, in sciatic nerve blockade in rats. J Pharm Biomed Anal 2017; 146:161-167. [PMID: 28881313 DOI: 10.1016/j.jpba.2017.07.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 02/05/2023]
Abstract
QX-OH, a new synthetic local anesthetic, produced concentration-dependent, reversible, and long-acting local anesthesia in animal models, with moderate local toxicity. As part of preclinical research for drug development, we developed and validated a method for the determination of QX-OH in the plasma, muscle, and sciatic nerve using liquid chromatography-mass spectrometry. After a simple protein precipitation procedure, analysis was performed on an Extend C18 column (100mm×3mm, 3.5μm) by isocratic elution with 0.05% formic acid/acetonitrile (78:22, v/v) at a flow rate of 0.3mL/min. A multiple-reaction monitoring mode at the transitions of m/z 279.1→102.1 for QX-OH and m/z 275.2→126.1 for an internal standard (ropivacaine hydrochloride) was used for the quantification, with a positive electrospray ionization interface. The approach was validated as per the U.S. Food and Drug Administration guidelines and successfully used in a pharmacokinetic study of QX-OH after a sciatic nerve block with 0.2mL of 35mM QX-OH. The results demonstrated that the new local anesthetic, QX-OH, had a high concentration in tissue, low systemic exposure, and long duration in the sciatic nerve.
Collapse
Affiliation(s)
- YuJun Zhang
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China; Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - DeYing Gong
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - QingShan Zheng
- Center for Drug Clinical Research, Shanghai University of Chinese Medicine, Shanghai 201203, PR China
| | - Jin Liu
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China; Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - WenSheng Zhang
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China; Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
15
|
Systemic QX-314 Reduces Bone Cancer Pain through Selective Inhibition of Transient Receptor Potential Vanilloid Subfamily 1-expressing Primary Afferents in Mice. Anesthesiology 2017; 125:204-18. [PMID: 27176211 DOI: 10.1097/aln.0000000000001152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND The aim of this study was to determine whether systemic administration of QX-314 reduces bone cancer pain through selective inhibition of transient receptor potential vanilloid subfamily 1 (TRPV1)-expressing afferents. METHODS A mouse model of bone cancer pain was used. The authors examined the effects of bolus (0.01 to 3 mg/kg, n = 6 to 10) and continuous (5 mg kg h, n = 5) administration of QX-314 on both bone cancer pain-related behaviors and phosphorylated cyclic adenosine monophosphate response element-binding protein expression in dorsal root ganglion neurons (n = 3 or 6) and the effects of ablation of TRPV1-expressing afferents on bone cancer pain-related behaviors (n = 10). RESULTS The numbers of flinches indicative of ongoing pain in QX-314-treated mice were smaller than those in vehicle-treated mice at 10 min (3 mg/kg, 4 ± 3; 1 mg/kg, 5 ± 3 vs. 12 ± 3; P < 0.001; n = 8 to 9), 24 h (3 ± 2 vs. 13 ± 3, P < 0.001), and 48 h (4 ± 1 vs. 12 ± 2, P < 0.001; n = 5 in each group) after QX-314 administration, but impaired limb use, weight-bearing including that examined by the CatWalk system, and rotarod performance indicative of movement-evoked pain were comparable. QX-314 selectively inhibited the increase in phosphorylated cyclic adenosine monophosphate response element-binding protein expression in TRPV1-positive, but not in TRPV1-negative, dorsal root ganglion neurons compared to that in the case of vehicle administration (32.2 ± 3.0% vs. 52.6 ± 5.9%, P < 0.001; n = 6 in each group). Ablation of TRPV1-expressing afferents mimicked the effects of QX-314. CONCLUSION This study showed that systemic administration of QX-314 in mice inhibits some behavioral aspects of bone cancer pain through selective inhibition of TRPV1-expressing afferents without coadministration of TRPV1 agonists.
Collapse
|
16
|
Zhang Y, Yang J, Yin Q, Yang L, Liu J, Zhang W. QX-OH, a QX-314 derivative agent, produces long-acting local anesthesia in rats. Eur J Pharm Sci 2017; 105:212-218. [PMID: 28529036 DOI: 10.1016/j.ejps.2017.05.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 02/05/2023]
Abstract
QX-314 has been shown to produce long-acting local anesthesia in vivo in animals; however, translation to humans has been impeded by concerns about toxicity. We investigated whether the newly emerged QX-OH molecule could confer long-lasting anesthesia with a low local toxicity in rats. In rat sciatic nerve block model, QX-OH 25mM produced a longer sensory block than QX-314 25mM (median [25th, 75th percentiles], 5.5 [4.25, 6] h vs. 3 [3, 4] h; P=0.03). QX-OH 35mM produced a longer sensory block than QX-314 35mM (8 [6, 12] h vs. 6 [4, 6.5] h, P=0.038). QX-OH at 35 and 45mM generated longer motor blocks than QX-314, with tissue toxicity less than that of QX-314 at the same concentration. In contrast with bupivacaine, QX-OH was clearly superior in terms of sensory and motor blockade durations after a single bolus injection. There was no significant difference in tissue toxicity between QX-OH (25 and 35mM) and bupivacaine. In rat cutaneous trunci pinprick model, the QX-OH-induced pain threshold remained significantly different from baseline at 6h (25mM, P<0.0001), 10h (35mM, P<0.0001), and 12h (45mM, P<0.0001). The time required for full recovery from the subcutaneous anesthetic effect was significantly longer for QX-OH than for QX-314 and bupivacaine. So QX-OH produced concentration-dependent, reversible, and long-acting local anesthesia in animal models with a moderate local toxicity.
Collapse
Affiliation(s)
- YuJun Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China; Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Jun Yang
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - QinQin Yin
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - LingHui Yang
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China; Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - WenSheng Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China; Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
17
|
Wang Q, Yin Q, Yang J, Ke B, Yang L, Liu J, Zhang W. Evaluation of the cardiotoxicity and resuscitation of rats of a newly developed mixture of a QX-314 analog and levobupivacaine. J Pain Res 2017; 10:737-746. [PMID: 28392712 PMCID: PMC5376121 DOI: 10.2147/jpr.s126396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Objective This study was designed to evaluate the cardiotoxicity of a QX-314 analog (QX-OH) and a mixture of QX-OH and levobupivacaine (LL-1) and to compare the ability to resuscitate rats after asystole induced by levobupivacaine (Levo-BUP), QX-314, QX-OH, and LL-1. Methods First, we used the “up-and-down” method to determine median dose resulting in appearance of cardiotoxicity (CD50C) and asystole (CD50A) of Levo-BUP, QX-314, QX-OH, and LL-1 in rats. Safety index (SI; ratio of CD50C compared with 2-fold median effective dose needed to produce sensory blockade) of the 4 drugs was calculated. Isobolograms were used for drug interaction analysis. Second, rats received 1.2-fold CD50A in the 4 groups. When asystole occurred, standard cardiopulmonary resuscitation was started and continued for 30 min or until return of spontaneous circulation (ROSC) with native rate–pressure product ≥30% baseline for 5 min. Results Ranking of CD50C was Levo-BUP < QX-314 ≈ QX-OH. Ranking of CD50A was Levo-BUP < QX-314 < QX-OH. However, the SI of Levo-BUP was significantly higher than that of QX-314 (10.60 vs. 1.20) or QX-OH (10.60 vs. 1.44). The SI of LL-1 was similar to that of Levo-BUP. Nonsynergistic interaction was observed for cardiac effects between QX-OH and Levo-BUP. ROSC was attained initially by 8 of 8 rats in the Levo-BUP group, 3 of 8 in the QX-314 group, 6 of 8 in the QX-OH group, and 8 of 8 in the LL-1 group. Sustained recovery was achieved in the Levo-BUP group but not in the other groups. Conclusion Levo-BUP and LL-1 are safer than QX-314 or QX-OH. Cardiac effects between QX-OH and Levo-BUP were nonsynergistic. Initial successful resuscitation could be achieved in the QX-OH- and LL-1-induced asystole, but advanced life support might be needed.
Collapse
Affiliation(s)
- Qi Wang
- Department of Anesthesiology
| | | | - Jun Yang
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Bowen Ke
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Linghui Yang
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jin Liu
- Department of Anesthesiology; Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Wensheng Zhang
- Department of Anesthesiology; Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
18
|
Yin Q, Li J, Zheng Q, Yang X, Lv R, Ma L, Liu J, Zhu T, Zhang W. The quaternary lidocaine derivative QX-314 in combination with bupivacaine for long-lasting nerve block: Efficacy, toxicity, and the optimal formulation in rats. PLoS One 2017; 12:e0174421. [PMID: 28334014 PMCID: PMC5363931 DOI: 10.1371/journal.pone.0174421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 03/08/2017] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE The quaternary lidocaine derivative (QX-314) in combination with bupivacaine can produce long-lasting nerve blocks in vivo, indicating potential clinical application. The aim of the study was to investigate the efficacy, safety, and the optimal formulation of this combination. METHODS QX-314 and bupivacaine at different concentration ratios were injected in the vicinity of the sciatic nerve in rats; bupivacaine and saline served as controls (n = 6~10). Rats were inspected for durations of effective sensory and motor nerve blocks, systemic adverse effects, and histological changes of local tissues. Mathematical models were established to reveal drug-interaction, concentration-effect relationships, and the optimal ratio of QX-314 to bupivacaine. RESULTS 0.2~1.5% QX-314 with 0.03~0.5% bupivacaine produced 5.8~23.8 h of effective nerve block; while 0.5% bupivacaine alone was effective for 4 h. No systemic side effects were observed; local tissue reactions were similar to those caused by 0.5% bupivacaine if QX-314 were used < 1.2%. The weighted modification model was successfully established, which revealed that QX-314 was the main active ingredient while bupivacaine was the synergist. The formulation, 0.9% QX-314 plus 0.5% bupivacaine, resulted in 10.1 ± 0.8 h of effective sensory and motor nerve blocks. CONCLUSION The combination of QX-314 and bupivacaine facilitated prolonged sciatic nerve block in rats with a satisfactory safety profile, maximizing the duration of nerve block without clinically important systemic and local tissue toxicity. It may emerge as an alternative approach to post-operative pain treatment.
Collapse
Affiliation(s)
- Qinqin Yin
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Jun Li
- North Sichuan Medical College, Nanchong, Sichuan, P. R. China
| | - Qingshan Zheng
- Center for Drug Clinical Research, Shanghai University of Chinese Medicine, Shanghai, P. R. China
| | - Xiaolin Yang
- North Sichuan Medical College, Nanchong, Sichuan, P. R. China
| | - Rong Lv
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Longxiang Ma
- Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Tao Zhu
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Wensheng Zhang
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
19
|
Yin Q, Ke B, Chen X, Guan Y, Feng P, Chen G, Kang Y, Zhang W, Nie Y. Effects of Liposomes Charge on Extending Sciatic Nerve Blockade of N-ethyl Bromide of Lidocaine in Rats. Sci Rep 2016; 6:38582. [PMID: 27924842 PMCID: PMC5141481 DOI: 10.1038/srep38582] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/09/2016] [Indexed: 02/05/2023] Open
Abstract
N-methyl bromide of lidocaine (QX-314) is a potential local anaesthetic with compromised penetration through cell membranes due to its obligated positive charge. Liposomes have been widely used for drug delivery with promising efficacy and safety. Therefore we investigated the local anaesthetic effects and tissue reactions of QX-314 in combination with anionic, cationic or neutral liposomes in rat sciatic nerve block model, and explored the effects of these liposomes on cellular entry of QX-314 in human embryonic kidney 293 cells. The results demonstrated that anionic liposomes substantially prolonged the duration of sensory (25.7 ± 8.3 h) and motor (41.4 ± 6.1 h) blocks of QX-314, while cationic and neutral ones had little effects. Tissue reactions from QX-314 with anionic liposomes were similar to those with commonly used local anaesthetic bupivacaine. Consistent with in vivo results, the anionic liposomes produced the greatest promotion of cellular entry of QX-314 in a time-dependent manner. In conclusion, ultra-long lasting nerve blocks were achieved by a mixture of QX-314 and anionic liposomes with a satisfactory safety profile, indicating a potential approach to improve postoperative pain management. The liposome-induced enhancement in cellular uptake of QX-314 may underlie the in vivo effects.
Collapse
Affiliation(s)
- Qinqin Yin
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre of West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Bowen Ke
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre of West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Xiaobing Chen
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, P.R. China
| | - Yikai Guan
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre of West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Ping Feng
- Institution of Clinical Trials, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Guo Chen
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre of West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Yi Kang
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre of West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Wensheng Zhang
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre of West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
- Department of Anaesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Yu Nie
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, P.R. China
| |
Collapse
|
20
|
Beiranvand S, Eatemadi A, Karimi A. New Updates Pertaining to Drug Delivery of Local Anesthetics in Particular Bupivacaine Using Lipid Nanoparticles. NANOSCALE RESEARCH LETTERS 2016; 11:307. [PMID: 27342601 PMCID: PMC4920745 DOI: 10.1186/s11671-016-1520-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 06/07/2016] [Indexed: 05/29/2023]
Abstract
Lipid nanoparticles (liposomes) were first described in 1965, and several work have led to development of important technical advances like triggered release liposomes and drug-loaded liposomes. These advances have led to numerous clinical trials in such diverse areas such as the delivery of anti-cancer, antifungal, and antibiotic drugs; the delivery of gene medicines; and most importantly the delivery of anesthesia drugs. Quite a number of liposomes are on the market, and many more are still in developmental stage. Lipid nanoparticles are the first nano-medicine delivery system to be advanced from laboratory concept to clinical application with high considerable clinical acceptance. Drug delivery systems for local anesthetics (LAs) have caught the interest of many researchers because there are many biomedical advantages connected to their application. There have been several formulation techniques to systemically deliver LA that include encapsulation in liposomes and complexation in cyclodextrins, nanoparticles, and to a little extent gold nanoparticles. The proposed formulations help to decrease the LA concentration utilized, increase its permeability, and most importantly increase the localization of the LA for a long period of time thereby leading to increase in the duration of the LA effect and finally to reduce any local and systemic toxicity. In this review, we will highlight on new updates pertaining to drug delivery of local anesthetics in particular bupivacaine using lipid nanoparticles.
Collapse
Affiliation(s)
- Siavash Beiranvand
- Department of Anesthesiology, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Ali Eatemadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Karimi
- Department of Anesthesiology, Lorestan University of Medical Sciences, Khoramabad, Iran.
| |
Collapse
|
21
|
Stueber T, Eberhardt MJ, Hadamitzky C, Jangra A, Schenk S, Dick F, Stoetzer C, Kistner K, Reeh PW, Binshtok AM, Leffler A. Quaternary Lidocaine Derivative QX-314 Activates and Permeates Human TRPV1 and TRPA1 to Produce Inhibition of Sodium Channels and Cytotoxicity. Anesthesiology 2016; 124:1153-65. [PMID: 26859646 DOI: 10.1097/aln.0000000000001050] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The relatively membrane-impermeable lidocaine derivative QX-314 has been reported to permeate the ion channels transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential cation channel, subfamily A, member 1 (TRPA1) to induce a selective inhibition of sensory neurons. This approach is effective in rodents, but it also seems to be associated with neurotoxicity. The authors examined whether the human isoforms of TRPV1 and TRPA1 allow intracellular entry of QX-314 to mediate sodium channel inhibition and cytotoxicity. METHODS Human embryonic kidney 293 (HEK-293) cells expressing wild-type or mutant human (h) TRPV1 or TRPA1 constructs as well as the sodium channel Nav1.7 were investigated by means of patch clamp and ratiometric calcium imaging. Cytotoxicity was examined by flow cytometry. RESULTS Activation of hTRPA1 by carvacrol and hTRPV1 by capsaicin produced a QX-314-independent reduction of sodium current amplitudes. However, permeation of QX-314 through hTRPV1 or hTRPA1 was evident by a concentration-dependent, use-dependent inhibition of Nav1.7 activated at 10 Hz. Five and 30 mM QX-314 activated hTRPV1 via mechanisms involving the intracellular vanilloid-binding domain and hTRPA1 via unknown mechanisms independent of intracellular cysteins. Expression of hTRPV1, but not hTRPA1, was associated with a QX-314-induced cytotoxicity (viable cells 48 ± 5% after 30 mM QX-314) that was ameliorated by the TRPV1 antagonist 4-(3-chloro-2-pyridinyl)-N-[4-(1,1-dimethylethyl)phenyl]-1-piperazinecarboxamide (viable cells 81 ± 5%). CONCLUSIONS The study data demonstrate that QX-314 directly activates and permeates the human isoforms of TRPV1 and TRPA1 to induce inhibition of sodium channels, but also a TRPV1-dependent cytotoxicity. These results warrant further validation of this approach in more intact preparations and may be valuable for the development of this concept into clinical practice.
Collapse
Affiliation(s)
- Thomas Stueber
- From the Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany (T.S., M.J.E., C.H., A.J., S.S., F.D., C.S., A.L.); Department of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (K.K., P.W.R.); and Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Faculty of Medicine, and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel (A.M.B.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Silencing Transient Receptor Potential Vanilloid Receptor Subtype I-containing Sensory Neurons to Treat Bone Cancer Pain. Anesthesiology 2016; 125:17-9. [PMID: 27176213 DOI: 10.1097/aln.0000000000001153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Takahashi K, Hayakawa C, Onimaru H. Effects of a quaternary lidocaine derivative, QX-314, on the respiratory activity in brainstem-spinal cord preparation from newborn rats. Neurosci Lett 2016; 619:121-5. [DOI: 10.1016/j.neulet.2016.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/29/2016] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
|
24
|
Whitehead RA, Schwarz SKW, Asiri YI, Fung T, Puil E, MacLeod BA. The Efficacy and Safety of the Novel Peripheral Analgesic Isovaline as an Adjuvant to Propofol for General Anesthesia and Conscious Sedation: A Proof-of-Principle Study in Mice. Anesth Analg 2016; 121:1481-7. [PMID: 26579656 DOI: 10.1213/ane.0000000000000996] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The combination of propofol and an opioid analgesic is widely used for procedural sedation, as well as total IV anesthesia. However, opioids produce respiratory depression, a primary cause of death due to these agents. We recently reported on the antinociceptive actions of isovaline, a small nonbiogenic amino acid that does not readily cross the blood-brain barrier and acts on peripheral γ-aminobutyric acid type B receptors. Here, we explored the possibility that isovaline may be an effective and safe alternative to opioids as an adjunct to propofol for producing anesthesia. METHODS With approval from our Animal Care Committee, we conducted an in vivo study in adult female CD-1 mice using Dixon's "up-and-down" method for dose assessment. Animals received intraperitoneal saline, propofol, isovaline, fentanyl, or coadministration of propofol with isovaline or fentanyl. We assessed hypnosis by a loss of righting reflex and immobility by an absence of motor response to tail clip application. General anesthesia was defined as the presence of both hypnosis and immobility. We assessed conscious sedation as a decrease in time on a rotarod. The maximal dose without respiratory rates of <4 per minute, apnea, or death was defined as the maximal tolerated dose. RESULTS Either isovaline or fentanyl coadministered with propofol at its half-maximal effective dose (ED50) for hypnosis produced general anesthesia (isovaline ED50, 96 mg/kg [95% confidence interval {CI}, 88-124 mg/kg]; fentanyl ED50, 0.12 mg/kg [95% CI, 0.08-3.5 mg/kg]). Propofol produced hypnosis (ED50, 124 mg/kg [95% CI, 84-3520 mg/kg]) but did not block responses to tail clip application. Neither isovaline nor fentanyl produced hypnosis at doses which produced immobility (isovaline ED50, 350 mg/kg [95% CI, 286-1120 mg/kg]; fentanyl ED50, 0.35 mg/kg [95% CI, 0.23-0.51 mg/kg]). Isovaline at its analgesic ED50, coadministered with a subhypnotic dose of propofol (40 mg/kg), did not exacerbate propofol-induced deficits in rotarod performance. The median maximal tolerated dose of fentanyl coadministered with the hypnotic ED50 of propofol was 11 mg/kg (95% CI, 8-18 mg/kg). Isovaline at a maximal deliverable (soluble) dose of 5000 mg/kg produced no apparent respiratory depression or other adverse effects. CONCLUSIONS The novel analgesic, isovaline, coadministered with propofol, produced general anesthesia and conscious sedation in mice. The margin of safety for propofol-isovaline was considerably higher than that for propofol-fentanyl. This study's results show that propofol-based sedation and general anesthesia can be effectively and safely produced by replacing the conventional opioid component with a brain-impermeant peripherally acting γ-aminobutyric acid type B receptor agonist. The results provide proof of the principle of combining a peripheral analgesic with a centrally acting hypnotic to produce general anesthesia. This principle suggests a novel approach to clinical general anesthesia and conscious sedation.
Collapse
Affiliation(s)
- Ryan A Whitehead
- From the *Department of Anesthesiology, Pharmacology & Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada; and †Department of Anesthesia, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Weinberg L, Peake B, Tan C, Nikfarjam M. Pharmacokinetics and pharmacodynamics of lignocaine: A review. World J Anesthesiol 2015; 4:17-29. [DOI: 10.5313/wja.v4.i2.17] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/16/2014] [Accepted: 04/14/2015] [Indexed: 02/06/2023] Open
Abstract
Lignocaine is an essential drug on World Health Organisation essential drug list, considered efficacious, safe and cost-effective for any health-care system. Despite its ubiquitous use in medicine and surgery, there are few detailed reviews of its pharmacokinetics and pharmacodynamics. Being an amide-type local anesthetic and Class 1b antiarrhythmic, lignocaine is most frequently used clinically for its anesthetic and antiarrhythmic benefits. However, lignocaine has important antinociceptive, immuno-modulating, and anti-inflammatory properties. Information pertaining to the pharmacokinetics and pharmacodynamics of lignocaine was examined by performing a literature search of PubMed, Embase and MEDLINE (via Ovid), pharmacology textbooks and online sources. We present a focused synopsis of lignocaine’s pharmacological composition, indications for use and mechanisms of action, focusing on its anti-inflammatory, immuno-modulating and analgesia effects. In addition we review the dosing regimes and infusion kinetics of lignocaine in the clinical setting. Finally, we review the evidence for ligocaine’s modulation of the inflammatory response during major surgery and its specific effects on cancer recurrence. These indirect effects of local anesthetics in tumor development may stem from the reduction of neuroendocrine responses to the stress response elicited by major surgery and tissue damage, enhanced preservation of immune-competence, in addition to opioid-sparing effects of modulating tumor growth.
Collapse
|
26
|
Abstract
Acute and chronic pain control is a significant clinical challenge that has been largely unmet. Local anesthetics are widely used for the control of post-operative pain and in the therapy of acute and chronic pain. While a variety of approaches are currently used to prolong the duration of action of local anesthetics, an optimal strategy to achieve neural blockage for several hours to days with minimal toxicity has yet to be identified. Several drug delivery systems such as liposomes, microparticles and nanoparticles have been investigated as local anesthetic delivery vehicles to achieve prolonged anesthesia. Recently, injectable responsive hydrogels raise significant interest for the localized delivery of anesthetic molecules. This paper discusses the potential of injectable hydrogels to prolong the action of local anesthetics.
Collapse
|
27
|
VAN DER WAL S, VANEKER M, STEEGERS M, VAN BERKUM B, KOX M, VAN DER LAAK J, VAN DER HOEVEN J, VISSERS K, SCHEFFER GJ. Lidocaine increases the anti-inflammatory cytokine IL-10 following mechanical ventilation in healthy mice. Acta Anaesthesiol Scand 2015; 59:47-55. [PMID: 25312651 DOI: 10.1111/aas.12417] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 12/24/2022]
Abstract
BACKGROUND Mechanical ventilation (MV) induces an inflammatory response that may result in (acute) lung injury. Lidocaine, an amide local anesthetic, has anti-inflammatory properties in vitro and in vivo, possibly due to an attenuation of pro-inflammatory cytokines, intracellular adhesion molecule-1 (ICAM-1), and reduction of neutrophils influx. We hypothesized an attenuation of MV-induced inflammatory response with intravenously administered lidocaine. METHODS Lidocaine (Lido) (2, 4, and 8 mg/kg/h) was intravenously administered during 4 h of MV with a tidal volume of 8 ml/kg, positive end expiratory pressure 1,5 cmH2O and FiO2 0.4. We used one ventilated control (CON) group receiving vehicle. After MV, mice were euthanized, and lungs and blood were immediately harvested, and cytokine levels and ICAM-1 levels were measured in plasma and lung homogenates. Pulmonary neutrophils influx was determined in LEDER-stained slices of lungs. Anesthetic need was determined by painful hind paw stimulation. RESULTS Lidocaine-treated animals (Lido 2, 4 and 8 mg/kg/h) showed higher interleukin (IL)-10 plasma levels compared to control animals. Lidocaine treatment with 8 mg/kg/h (Lido 8) resulted in higher IL-10 in lung homogenates. No differences were observed in pro-inflammatory cytokines, ICAM-1, and pulmonary influx between the different ventilated groups. CONCLUSIONS Intravenously administered lidocaine increases levels of plasma IL-10 with infusion from 2, 4, and 8 mg/kg/h and pulmonary levels of IL-10 with 8 mg/kg/h in a murine mechanical ventilation model. Intravenously administered lidocaine appears to reduce anesthetic need in mice.
Collapse
Affiliation(s)
- S. VAN DER WAL
- Department of Anesthesiology, Pain and Palliative Care; Radboud University Nijmegen Medical Center; Nijmegen The Netherlands
| | - M. VANEKER
- Department of Anesthesiology, Pain and Palliative Care; Radboud University Nijmegen Medical Center; Nijmegen The Netherlands
| | - M. STEEGERS
- Department of Anesthesiology, Pain and Palliative Care; Radboud University Nijmegen Medical Center; Nijmegen The Netherlands
| | - B. VAN BERKUM
- Department of Anesthesiology, Pain and Palliative Care; Radboud University Nijmegen Medical Center; Nijmegen The Netherlands
| | - M. KOX
- Department of Intensive Care Medicine; Radboud University Nijmegen Medical Center; Nijmegen The Netherlands
| | - J. VAN DER LAAK
- Department of Pathology; Radboud University Nijmegen Medical Center; Nijmegen The Netherlands
| | - J. VAN DER HOEVEN
- Department of Intensive Care Medicine; Radboud University Nijmegen Medical Center; Nijmegen The Netherlands
| | - K. VISSERS
- Department of Anesthesiology, Pain and Palliative Care; Radboud University Nijmegen Medical Center; Nijmegen The Netherlands
| | - G. J. SCHEFFER
- Department of Anesthesiology, Pain and Palliative Care; Radboud University Nijmegen Medical Center; Nijmegen The Netherlands
| |
Collapse
|
28
|
The quaternary lidocaine derivative QX-314 produces long-lasting intravenous regional anesthesia in rats. PLoS One 2014; 9:e99704. [PMID: 24932639 PMCID: PMC4059684 DOI: 10.1371/journal.pone.0099704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/18/2014] [Indexed: 02/05/2023] Open
Abstract
Background The lidocaine derivative, QX-314, produces long-lasting regional anesthesia in various animal models. We designed this study to examine whether QX-314 could produce long-lasting intravenous regional anesthesia (IVRA) in a rat model. Methods IVRA was performed on tail of rats. EC50 (median effective concentration) of QX-314 in IVRA was determined by up-and-down method. IVRA on tail of rats was evaluated by tail-flick and tail-clamping tests. For comparison between QX-314 and lidocaine, 60 Sprague-Dawley rats were randomly divided into 6 groups (n = 10/group), respectively receiving 0.5 ml of 0.5% lidocaine, 0.25% QX-314, 0.5% QX-314, 1.0% QX-314, 2.0% QX-314 and normal saline. To explore the role of TRPV1 channel in IVRA of QX-314, 20 rats were randomly divided into 2 groups (n = 10/group), respectively receiving 0.5 ml of 1% QX-314 and 1% QX-314+75 µg/ml capsazepine. Toxicities of QX-314 on central nervous system and cardiac system were measured in rats according to Racine's convulsive scale and by electrocardiogram, respectively. Results QX-314 could produce long-lasting IVRA in a concentration-dependent manner. EC50 of QX-314 in rat tail IVRA was 0.15±0.02%. At concentration of 0.5%, IVRA duration of QX-314 (2.5±0.7 hour) was significantly longer than that of 0.5% lidocaine (0.3±0.2 hour, P<0.001). TRPV1 channel antagonist (capsazepine) could significantly reduce the effect of QX-314. For evaluation of toxicities, QX-314 at doses of 5 or 10 mg/kg did not induce any serious complications. However, QX-314 at dose of 20 mg/kg (1% QX-314 0.5 ml for a rat weighing 250 g) induced death in 6/10 rats. Conclusions QX-314 could produce long-lasting IVRA in a concentration-dependent manner. This long-lasting IVRA was mediated by activation of TRPV1 channels. Evaluation of toxic complications of QX-314 confirmed that low but relevant doses of QX-314 did not result in any measurable toxicity.
Collapse
|
29
|
Duration and local toxicity of sciatic nerve blockade with coinjected site 1 sodium-channel blockers and quaternary lidocaine derivatives. Reg Anesth Pain Med 2013; 37:483-9. [PMID: 22914659 DOI: 10.1097/aap.0b013e31826125b3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND OBJECTIVES Quaternary lidocaine derivatives (QLDs) have recently received much attention because of their potential application in prolonged or sensory-selective local anesthesia. However, associated tissue toxicity is an impeding factor that makes QLDs unfavorable for clinical use. Based on the proposed intracellular site of action, we hypothesized that nerve blocks obtained from lower concentrations of QLDs would be enhanced by the coapplication of extracellularly acting site 1 sodium-channel blocker, resulting in prolonged block duration but with minimal tissue toxicity. METHODS Quaternary lidocaine derivatives (QX-314 or QX-222), site 1 sodium-channel blockers (tetrodotoxin [30 μM] or saxitoxin [12.5 μM]), or both were injected in the vicinity of the sciatic nerve. Thermal nociceptive block was assessed using a modified hot plate test; motor block by a weight-bearing test. Tissue from the site of injection was harvested for histological assessment. RESULTS Coapplication of 25 mM QX-314 or 100 mM QX-222 with site 1 sodium-channel blockers produced an 8- to 10- fold increase in the duration of nerve blocks (P < 0.05), compared with QLDs or site 1 blockers alone. Quaternary lidocaine derivatives elicited severe myotoxicity; this was not exacerbated by coinjection of the site 1 sodium-channel blockers. CONCLUSIONS Coadministration of site 1 sodium-channel blockers and QLDs greatly prolongs the duration of peripheral nerve block without enhancing local tissue injury, but minimal myotoxicity still persists. It is not clear that the risks of QLDs are outweighed by the benefits in providing prolonged nerve blockade.
Collapse
|
30
|
Foley PL, Ulery BD, Kan HM, Burks MV, Cui Z, Wu Q, Nair LS, Laurencin CT. A chitosan thermogel for delivery of ropivacaine in regional musculoskeletal anesthesia. Biomaterials 2013; 34:2539-46. [DOI: 10.1016/j.biomaterials.2012.12.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 12/29/2012] [Indexed: 10/27/2022]
|
31
|
Eijkelkamp N, Linley JE, Baker MD, Minett MS, Cregg R, Werdehausen R, Rugiero F, Wood JN. Neurological perspectives on voltage-gated sodium channels. Brain 2012; 135:2585-612. [PMID: 22961543 PMCID: PMC3437034 DOI: 10.1093/brain/aws225] [Citation(s) in RCA: 262] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The activity of voltage-gated sodium channels has long been linked to disorders of neuronal excitability such as epilepsy and chronic pain. Recent genetic studies have now expanded the role of sodium channels in health and disease, to include autism, migraine, multiple sclerosis, cancer as well as muscle and immune system disorders. Transgenic mouse models have proved useful in understanding the physiological role of individual sodium channels, and there has been significant progress in the development of subtype selective inhibitors of sodium channels. This review will outline the functions and roles of specific sodium channels in electrical signalling and disease, focusing on neurological aspects. We also discuss recent advances in the development of selective sodium channel inhibitors.
Collapse
Affiliation(s)
- Niels Eijkelkamp
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | | | | | | | | | |
Collapse
|