1
|
Voloshina M, Rajput VD, Minkina T, Vechkanov E, Mandzhieva S, Mazarji M, Churyukina E, Plotnikov A, Krepakova M, Wong MH. Zinc Oxide Nanoparticles: Physiological and Biochemical Responses in Barley ( Hordeum vulgare L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:2759. [PMID: 36297783 PMCID: PMC9607964 DOI: 10.3390/plants11202759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/10/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
This work aimed to study the toxic implications of zinc oxide nanoparticles (ZnO NPs) on the physio-biochemical responses of spring barley (Hordeum sativum L.). The experiments were designed in a hydroponic system, and H. sativum was treated with two concentrations of ZnO NPs, namely 300 and 2000 mg/L. The findings demonstrated that ZnO NPs prevent the growth of H. sativum through the modulation of the degree of oxidative stress and the metabolism of antioxidant enzymes. The results showed increased malondialdehyde (MDA) by 1.17- and 1.69-fold, proline by 1.03- and 1.09-fold, and catalase (CAT) by 1.4- and 1.6-fold in shoots for ZnO NPs at 300 and 2000 mg/L, respectively. The activity of superoxide dismutase (SOD) increased by 2 and 3.3 times, ascorbate peroxidase (APOX) by 1.2 and 1.3 times, glutathione-s-transferase (GST) by 1.2 and 2.5 times, and glutathione reductase (GR) by 1.8 and 1.3 times in roots at 300 and 2000 mg/L, respectively. However, the level of δ-aminolevulinic acid (ALA) decreased by 1.4 and 1.3 times in roots and by 1.1 times in both treatments (nano-300 and nano-2000), respectively, indicating changes in the chlorophyll metabolic pathway. The outcomes can be utilized to create a plan of action for plants to withstand the stress brought on by the presence of NPs.
Collapse
Affiliation(s)
- Marina Voloshina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Evgeniy Vechkanov
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Mahmoud Mazarji
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Ella Churyukina
- Division for Allergic and Autoimmune Diseases, Rostov State Medical University, 344000 Rostov-on-Don, Russia
| | - Andrey Plotnikov
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Maria Krepakova
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Ming Hung Wong
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
- Consortium on Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong 999077, China
| |
Collapse
|
2
|
Prestes JG, De Souza MRDP, Kandalski PK, Herrerias T, Machado C, de Arruda Martins E, Dos Anjos VA, Neundorf AKA, Pereira DMC, Moura MO, Donatti L. Biomarkers of oxidative stress and cell damage in freshwater bivalves Diplodon parodizi exposed to landfill leachate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28384-28395. [PMID: 32418097 DOI: 10.1007/s11356-020-08721-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Landfill is a public and environmental health problem; establishing and understanding methodologies to decrease its toxicity are thus necessary. Leachate samples were collected, at a sanitary landfill, immediately after the exit from the landfill, i.e. raw leachate (collection point A), after conventional treatment (point B) and after treatment by wetlands (point C). D. parodizi specimens were exposed to 3%, 10% and control (0%) dilutions of leachate from these collection points for 7 days. Markers of antioxidant defences and cell damage were analysed. At point B, the gills of D. parodizi showed higher glutathione-S-transferase (GST) and glutathione reductase (GR) activity; the latter is a supplier of glutathione reductase (GSH). The low GST activity at point A was associated with the hormesis effect. Higher levels of superoxide dismutase (SOD), ethoxyresorufin-O-deethylase (EROD) and glutathione peroxidase (GPx) occurred at point A. Glucose-6-phosphate dehydrogenase (G6PDH) was inhibited at the points with the highest pollutant load and at the highest leachate dilutions. Higher levels of markers at point A may be related to the high pollutant charge and specific compounds present in the untreated leachate. The multi-xenobiotic resistance mechanism (MXR), metallothionein-like proteins (MT) and lipid peroxidation (LPO) did not vary among treatments. The biomarker responses showed negative effects of the leachate on the freshwater bivalve and simultaneously showed that the wetland treatment employed at the Caximba sanitary landfill is effective.
Collapse
Affiliation(s)
| | | | | | | | - Cintia Machado
- Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | | | | | | | - Lucelia Donatti
- Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
3
|
A New Cold-Adapted and Salt-Tolerant Glutathione Reductase from Antarctic Psychrophilic Bacterium Psychrobacter sp. and Its Resistance to Oxidation. Int J Mol Sci 2020; 21:ijms21020420. [PMID: 31936518 PMCID: PMC7014036 DOI: 10.3390/ijms21020420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 01/15/2023] Open
Abstract
A new glutathione reductase gene (psgr) coding for glutathione reductase (GR) from an Antarctic bacterium was cloned and overexpressed into Escherichia coli (E. coli). A sequence analysis revealed that PsGR is a protein consisting of 451 amino acids, and homology modeling demonstrated that PsGR has fewer hydrogen bonds and salt bridges, which might lead to improved conformational flexibility at low temperatures. PsGR possesses the flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide phosphate (NADPH) binding motifs. Recombinant PsGR (rPsGR) was purified using Ni-NTA affinity chromatography and was found to have a molecular mass of approximately 53.5 kDa. rPsGR was found to be optimally active at 25 °C and a pH of 7.5. It was found to be a cold-adapted enzyme, with approximately 42% of its optimal activity remaining at 0 °C. Moreover, rPsGR was most active in 1.0 M NaCl and 62.5% of its full activity remained in 3.0 M NaCl, demonstrating its high salt tolerance. Furthermore, rPsGR was found to have a higher substrate affinity for NADPH than for GSSG (oxidized glutathione). rPsGR provided protection against peroxide (H2O2)-induced oxidative stress in recombinant cells, and displayed potential application as an antioxidant protein. The results of the present study provide a sound basis for the study of the structural characteristics and catalytic characterization of cold-adapted GR.
Collapse
|