1
|
Murthy HN, Yadav GG, Kadapatti SS, Sandhya M. Phytochemical Analysis, GC-MS Identification of Bioactive Compounds, and In Vitro Antioxidant Activities of Resin of Garcinia indica (Thouars) Choisy. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04343-x. [PMID: 36705843 DOI: 10.1007/s12010-023-04343-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/28/2023]
Abstract
The objective of this study was to evaluate phytochemicals present in the resin of Garcinia indica (Gamboge). We assessed the phytochemical constituents and antioxidant potential of acetone, methanol, and water extracts of resin. Acetone and methanol extracts contain a high amount of phenolics (183.90 and 182.85 mg GAE (gallic acid equivalent)/g) and flavonoids (72.65 and 71.33 mg QE (quercetin equivalent)/g), respectively, whereas methanol extract had the highest 7.62 mg AE (atropine equivalent)/g of alkaloid. GC-MS analysis of acetone extract identified 15 compounds and the majority of them were terpenoids, and 9,19-cyclo-25,26-epoxyergostan-3-ol,4,4,14-trimethyl-, acetate was the major compound among all terpenoids. Both acetone and methanol extracts showed excellent antioxidant activity as assessed by DPPH, total antioxidant activity, and FRAP assays. This experimental evidence suggests that G. indica resin is an excellent source of bioactive compounds and can be explored for its medicinal applications.
Collapse
Affiliation(s)
| | | | | | - M Sandhya
- Department of Botany, Karnatak University, Dharwad, 580003, India
| |
Collapse
|
2
|
Phytochemicals and Biological Activities of Garcinia morella (Gaertn.) Desr.: A Review. Molecules 2020; 25:molecules25235690. [PMID: 33276654 PMCID: PMC7730552 DOI: 10.3390/molecules25235690] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 01/28/2023] Open
Abstract
Garcinia morella (Gaertn.) Desr. is an evergreen tree that yields edible fruits, oil, and resin. It is a source of “gamboge”, a gum/resin that has a wide range of uses. The fruits, leaves, and seeds of this tree are rich in bioactive compounds, including xanthones, flavonoids, phenolic acids, organic acids, and terpenoids. Evidence from different studies has demonstrated the antioxidant, antifungal, antiviral, hepatoprotective, anticancer, anti-inflammatory, antibacterial, and larvicidal activities of the fruit, leaf, and seed extracts of G. morella. This review summarizes the information on the phytochemicals of G. morella and the biological activities of its active constituents.
Collapse
|
3
|
Shahinuzzaman M, Yaakob Z, Anuar FH, Akhtar P, Kadir NHA, Hasan AKM, Sobayel K, Nour M, Sindi H, Amin N, Sopian K, Akhtaruzzaman M. In vitro antioxidant activity of Ficus carica L. latex from 18 different cultivars. Sci Rep 2020; 10:10852. [PMID: 32616768 PMCID: PMC7331616 DOI: 10.1038/s41598-020-67765-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 06/08/2020] [Indexed: 12/03/2022] Open
Abstract
As synthetic antioxidants that are widely used in foods are known to cause detrimental health effects, studies on natural additives as potential antioxidants are becoming increasingly important. In this work, the total phenolic content (TPC) and antioxidant activity of Ficus carica Linn latex from 18 cultivars were investigated. The TPC of latex was calculated using the Folin–Ciocalteu assay. 1,1-Diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and ferric ion reducing antioxidant power (FRAP) were used for antioxidant activity assessment. The bioactive compounds from F. carica latex were extracted via maceration and ultrasound-assisted extraction (UAE) with 75% ethanol as solvent. Under the same extraction conditions, the latex of cultivar ‘White Genoa’ showed the highest antioxidant activity of 65.91% ± 1.73% and 61.07% ± 1.65% in DPPH, 98.96% ± 1.06% and 83.04% ± 2.16% in ABTS, and 27.08 ± 0.34 and 24.94 ± 0.84 mg TE/g latex in FRAP assay via maceration and UAE, respectively. The TPC of ‘White Genoa’ was 315.26 ± 6.14 and 298.52 ± 9.20 µg GAE/mL via the two extraction methods, respectively. The overall results of this work showed that F. carica latex is a potential natural source of antioxidants. This finding is useful for further advancements in the fields of food supplements, food additives and drug synthesis in the future.
Collapse
Affiliation(s)
- M Shahinuzzaman
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia. .,Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| | - Zahira Yaakob
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Farah Hannan Anuar
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Parul Akhtar
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - N H A Kadir
- School of Fundamental Science, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - A K Mahmud Hasan
- Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - K Sobayel
- Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Majid Nour
- Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Hatem Sindi
- Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Nowshad Amin
- Institute of Sustainable Energy, Universiti Tenaga Nasional (@The National Energy University), Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia
| | - K Sopian
- Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Md Akhtaruzzaman
- Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia. .,Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
4
|
Gandhi AD, Murugan K, Umamahesh K, Babujanarthanam R, Kavitha P, Selvi A. Lichen Parmelia sulcata mediated synthesis of gold nanoparticles: an eco-friendly tool against Anopheles stephensi and Aedes aegypti. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:23886-23898. [PMID: 31218582 DOI: 10.1007/s11356-019-05726-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/10/2019] [Indexed: 05/06/2023]
Abstract
The gold nanoparticles (AuNPs) were synthesized using the lichen Parmelia sulcata extract (PSE) and characterized. The peaks of ultraviolet spectrophotometer and Fourier transmission infrared confirmed the formation of nanoparticles and the bioactive compounds of the lichen being responsible for reducing and capping of the particles. The face-centered cubic particles were determined by XRD peaks at 111, 200, 220, and 311. The elemental composition and spherical shape of AuNPs were confirmed by energy-dispersive spectroscopy and transmission electron microscopy. The average particle size is 54 nm, and the zeta potential - 18 was ascertained by dynamic light scattering. The potential effect of synthesized nanoparticles and lichen extracts was evaluated for antioxidant bioassays like DPPH and H2O2 and tested for mosquitocidal activity against Anopheles stephensi. Results showed that the lichen extract and AuNPs have the capability to scavenge the free radicals with the IC50 values of DPPH being 1020 and 815 μg/ml and the IC50 values of H2O2 being 694 and 510 μg/ml, respectively. The mosquitocidal experimental results in this study showed the inhibition of A. stephensi and A. aegypti against the larvae (I-IV instar), pupae, adult, and egg hatching. On comparison, A. stephensi showed effective inhibition than A. aegypti even at low concentration. Based on the obtained results, gold nanoparticles synthesized using PSE showed an excellent mosquitocidal effect against Anopheles stephensi.
Collapse
Affiliation(s)
- Arumugam Dhanesh Gandhi
- Nano and Energy Biosciences Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, India
- Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632 115, India
| | - Katike Umamahesh
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, 517502, India
| | - Ranganathan Babujanarthanam
- Nano and Energy Biosciences Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India.
| | - Purushothaman Kavitha
- Department of Biochemistry, K.M.G. College of Arts and Science, Gudiyattam, Vellore, Tamil Nadu, 635803, India
| | - Adikesavan Selvi
- Environmental Molecular and Microbiology Research Laboratory (EMMR), Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, India
| |
Collapse
|