1
|
Ribeiro CB, Castro FDOFD, Dorneles GP, de Sousa Barros JB, Silva JM, Tavares C, Carvalho HR, Carlos da Cunha L, Nagib P, Hoffmann C, Peres A, Torres Romão PR, Pfrimer IAH, Fonseca SGD. The concomitant use of cannabis and cocaine coexists with increased LPS levels and systemic inflammation in male drug users. Cytokine 2021; 141:155472. [PMID: 33618152 DOI: 10.1016/j.cyto.2021.155472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/22/2021] [Accepted: 02/04/2021] [Indexed: 01/08/2023]
Abstract
Illicit drug use can cause a variety of effects including alterations in the immune system. The aim of this study was to investigate the effects of illicit drugs on circulating lipopolysaccharide (LPS), systemic inflammation and oxidative stress markers in drug users. We evaluated the levels of soluble CD14 (sCD14), LPS, inflammatory (TNF-α and IL-6) and regulatory (IL-10) cytokines, as well as C-reactive protein (CRP), lipid peroxidation (TBARS) and total thiols in the peripheral blood of 81 men included in groups of cannabis (n = 21), cocaine (n = 12), cannabis-plus-cocaine users (n = 27), and non-drug users (n = 21). The use of cannabis plus cocaine leads to higher systemic levels of LPS, CRP, IL-6 and higher IL-6/IL-10 ratio, characterizing a proinflammatory profile. In contrast, a regulatory profile as viewed by lower systemic TNF-α and IL-6 levels and lower TNF-α/IL-10 ratio were observed in cannabis users compared to the control group. Moreover, cocaine users presented a lower content of non-enzymatic antioxidant thiol compared to control group, cannabis group and cannabis plus cocaine group. In conclusion, our results indicate that the use of cannabis contributes to an anti-inflammatory/or regulatory profile while the concomitant cannabis plus cocaine consumption coexists with increased circulating amounts of LPS and proinflammatory status.
Collapse
Affiliation(s)
- Camila Bastos Ribeiro
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Gilson Pires Dorneles
- Laboratório de Imunologia Celular e Molecular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Jacyelle Medeiros Silva
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Camila Tavares
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | | | - Patrícia Nagib
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Christian Hoffmann
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alessandra Peres
- Laboratório de Imunologia Celular e Molecular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Pedro Roosevelt Torres Romão
- Laboratório de Imunologia Celular e Molecular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Simone Gonçalves da Fonseca
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil; iii-INCT-Instituto de Investigação em Imunologia - Instituto Nacional de Ciência e Tecnologia, Brazil.
| |
Collapse
|
2
|
Evaluation of Cysteine Metabolism in the Rat Liver and Kidney Following Intravenous Cocaine Administration and Abstinence. Antioxidants (Basel) 2021; 10:antiox10010074. [PMID: 33430073 PMCID: PMC7827093 DOI: 10.3390/antiox10010074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 01/02/2023] Open
Abstract
Many toxic effects of cocaine are attributed to reactive oxygen species (ROS) generated during its metabolism. Recently, it has been suggested that the biological action of ROS is often confused with endogenously generated reactive sulfur species (RSS). The aim of this study was to evaluate the impact of cocaine on thiols and RSS in the rat liver and kidney in the drug self-administration (SA) paradigm and the cocaine yoked delivery model (YC) followed by drug abstinence with extinction training. The level of thiols as well as RSS formed during anaerobic metabolism of cysteine and sulfate were assayed. In addition, the activity of enzymes involved in RSS formation and glutathione metabolism were determined. In the liver, following direct cocaine administration (SA and YC), the RSS levels decreased, while in the kidneys, cocaine increased the RSS contents in both groups. These changes were maintained in these tissues during drug abstinence. The level of sulfates was changed by cocaine only in the liver. In the kidney, cocaine shifted cysteine metabolism towards an anaerobic pathway. Our study demonstrates for the first time the changes in cysteine metabolism and thiol levels in the liver and kidney of rats after cocaine self-administration and abstinence.
Collapse
|
3
|
Lehner AF, Dirikolu L, Johnson M, Buchweitz JP, Langlois DK. Liquid chromatography/tandem mass spectrometric analysis of penicillamine for its pharmacokinetic evaluation in dogs. Toxicol Mech Methods 2020; 30:687-702. [PMID: 32854553 DOI: 10.1080/15376516.2020.1814467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Copper storage disease occurs in multiple dog breeds and is one of the most common causes of chronic hepatitis in this species. The disease is caused by hereditary defects in copper metabolism in conjunction with high dietary copper levels. The progressive copper accumulation leads to hepatitis, cirrhosis, and eventually death if left untreated. Copper chelators are critical in modulating the effects of this disease. It is therefore of significant practicality to understand the pharmacokinetic (PK) parameters of chelating agents, particularly since they are oftentimes quite expensive. A liquid chromatography-tandem mass spectrometric (LC/MS/MS) method was developed to measure plasma levels of one of the most common chelators, d-penicillamine. The compound was discovered to exist in two forms, monomeric and dimeric, and various chemical derivatizations were tried to force the compound into one form or the other. Eventually, the simplest approach was individual determination of penicillamine and its dimer, with summation of the two quantities. This enabled determination of canine PK parameters for penicillamine based on comparison of oral and intravenous administration of the drug, including time to maximum drug level (Tmax), concentration at maximum (Cmax), clearance (Cls) and volume of distribution (Vdss). The drug was found to exist predominantly in the dimeric form in plasma, which is incapable of chelating copper owing to lack of free sulfhydryl groups and must therefore provide a storage form of the drug in equilibrium with its monomeric form in vivo. Mechanisms are discussed for the electrospray-induced fragmentation of penicillamine as well as of its dimer.
Collapse
Affiliation(s)
- Andreas F Lehner
- Veterinary Diagnostic Laboratory, Michigan State University, East Lansing, MI, USA
| | - Levent Dirikolu
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisianna State University, Baton Rouge, LA, USA
| | - Margaret Johnson
- Veterinary Diagnostic Laboratory, Michigan State University, East Lansing, MI, USA
| | - John P Buchweitz
- Veterinary Diagnostic Laboratory, Michigan State University, East Lansing, MI, USA.,Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Daniel K Langlois
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
4
|
Kowalczyk-Pachel D, Iciek M, Wydra K, Nowak E, Górny M, Filip M, Włodek L, Lorenc-Koci E. Cysteine Metabolism and Oxidative Processes in the Rat Liver and Kidney after Acute and Repeated Cocaine Treatment. PLoS One 2016; 11:e0147238. [PMID: 26808533 PMCID: PMC4726505 DOI: 10.1371/journal.pone.0147238] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/30/2015] [Indexed: 12/31/2022] Open
Abstract
The role of cocaine in modulating the metabolism of sulfur-containing compounds in the peripheral tissues is poorly understood. In the present study we addressed the question about the effects of acute and repeated (5 days) cocaine (10 mg/kg i.p.) administration on the total cysteine (Cys) metabolism and on the oxidative processes in the rat liver and kidney. The whole pool of sulfane sulfur, its bound fraction and hydrogen sulfide (H2S) were considered as markers of anaerobic Cys metabolism while the sulfate as a measure of its aerobic metabolism. The total-, non-protein- and protein- SH group levels were assayed as indicators of the redox status of thiols. Additionally, the activities of enzymes involved in H2S formation (cystathionine γ-lyase, CSE; 3-mercaptopyruvate sulfurtransferase, 3-MST) and GSH metabolism (γ-glutamyl transpeptidase, γ-GT; glutathione S-transferase, GST) were determined. Finally, we assayed the concentrations of reactive oxygen species (ROS) and malondialdehyde (MDA) as markers of oxidative stress and lipid peroxidation, respectively. In the liver, acute cocaine treatment, did not change concentrations of the whole pool of sulfane sulfur, its bound fraction, H2S or sulfate but markedly decreased levels of non-protein SH groups (NPSH), ROS and GST activity while γ-GT was unaffected. In the kidney, acute cocaine significantly increased concentration of the whole pool of sulfane sulfur, reduced the content of its bound fraction but H2S, sulfate and NPSH levels were unchanged while ROS and activities of GST and γ-GT were reduced. Acute cocaine enhanced activity of the CSE and 3-MST in the liver and kidney, respectively. Repeatedly administered cocaine enhanced the whole pool of sulfane sulfur and reduced H2S level simultaneously increasing sulfate content both in the liver and kidney. After repeated cocaine, a significant decrease in ROS was still observed in the liver while in the kidney, despite unchanged ROS content, a marked increase in MDA level was visible. The repeated cocaine decreased 3-MST and increased γ-GT activities in both organs but reduced GST in the kidney. Our results show that cocaine administered at a relatively low dose shifts Cys metabolism towards the formation of sulfane sulfur compounds which possess antioxidant and redox regulatory properties and are a source of H2S which can support mitochondrial bioenergetics.
Collapse
Affiliation(s)
| | - Małgorzata Iciek
- The Chair of Medical Biochemistry, Jagiellonian University Medical College, Cracow, Poland
| | - Karolina Wydra
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Ewa Nowak
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Magdalena Górny
- The Chair of Medical Biochemistry, Jagiellonian University Medical College, Cracow, Poland
| | - Małgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Lidia Włodek
- The Chair of Medical Biochemistry, Jagiellonian University Medical College, Cracow, Poland
| | - Elżbieta Lorenc-Koci
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
- * E-mail:
| |
Collapse
|
5
|
Cocaine exposure alters H2S tissue concentrations in peripheral mouse organs. Pharmacol Rep 2014; 67:421-5. [PMID: 25933948 DOI: 10.1016/j.pharep.2014.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/23/2014] [Accepted: 11/07/2014] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hydrogen sulfide (H2S) is well-known as a physiological mediator in the mammalian brain and peripheral tissues. Among several factors that change the concentration of H2S, oxidative stress and generation of reactive oxygen species, which accompany neurochemical actions of drugs of abuse, are of recent interest. OBJECTIVE Limited data on the connection of cocaine and H2S levels prompted us to investigate the effect of this psychostimulant on the H2S concentration in the mouse brain and peripheral organs. METHODS Male BALB/C mice were given several cocaine dosage and treatment regimens, and the free and acid-labile H2S tissue concentrations were determined with a modified spectrophotometric method of Siegel. RESULTS We demonstrated the dose- and treatment-dependent decreases in the H2S level in the heart (83% of control level), and in the liver and kidney (17-34% of control levels) homogenates, but no changes were seen in the mouse brain. The strongest effect occurred after repeated administration of cocaine (20mg/kg) in all peripheral tissues. CONCLUSION A reduction in the peripheral tissue H2S level in the heart, liver and kidney homogenates after repeated injections of cocaine may be the result of a strong toxic effect of the drug.
Collapse
|