1
|
Kavakli E, Gul N, Begentas OC, Kiris E. Astrocytes in Primary Familial Brain Calcification (PFBC): Emphasis on the Importance of Induced Pluripotent Stem Cell-Derived Human Astrocyte Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 39841380 DOI: 10.1007/5584_2024_840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Primary familial brain calcification (PFBC) is a rare, progressive central nervous system (CNS) disorder without a cure, and the current treatment methodologies primarily aim to relieve neurological and psychiatric symptoms of the patients. The disease is characterized by abnormal bilateral calcifications in the brain, however, our mechanistic understanding of the biology of the disease is still limited. Determining the roles of the specific cell types and molecular mechanisms involved in the pathophysiological processes of the disease is of great importance for the development of novel and effective treatment methodologies. There is a growing interest in the involvement of astrocytes in PFBC, as recent studies have suggested that astrocytes play a central role in the disease and that functional defects in these cells are critical for the development and progression of the disease. This review aims to discuss recent findings on the roles of astrocytes in PFBC pathophysiology, with a focus on known expression and roles of PFBC genes in astrocytes. Additionally, we discuss the importance of human astrocytes for PFBC disease modeling, and astrocytes as a potential therapeutic target in PFBC. Utilization of species-specific and physiologically relevant PFBC model systems can open new avenues for basic research, drug development, and regenerative medicine.
Collapse
Affiliation(s)
- Ebru Kavakli
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| | - Nazli Gul
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| | - Onur Can Begentas
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| | - Erkan Kiris
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye.
| |
Collapse
|
2
|
Koc D, Ibis K, Besarat P, Banoglu E, Kiris E. Tirbanibulin (KX2-391) analog KX2-361 inhibits botulinum neurotoxin serotype A mediated SNAP-25 cleavage in pre- and post-intoxication models in cells. Drug Dev Res 2024; 85:e22248. [PMID: 39166850 DOI: 10.1002/ddr.22248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/11/2024] [Accepted: 08/04/2024] [Indexed: 08/23/2024]
Abstract
Botulinum neurotoxins (BoNT) inhibit neuroexocytosis, leading to the potentially lethal disease botulism. BoNT serotype A is responsible for most human botulism cases, and there are no approved therapeutics to treat already intoxicated patients. A growing body of research has demonstrated that BoNT/A can escape into the central nervous system, and therefore, identification of BoNT/A inhibitors that can penetrate BBB and neutralize the toxin within intoxicated neurons would be important. We previously identified an FDA-approved, orally bioavailable compound, KX2-391 (Tirbanibulin) that inhibits BoNT/A in motor neuron assays. Recently, a structural analog of KX2-391, KX2-361, has been shown to exhibit good oral bioavailability and cross BBB with high efficiency in mouse experiments. Therefore, in this work, we evaluated the inhibitory effects of KX2-361 against BoNT/A. Toward this goal, we first evaluated the compound for its effects on cell viability in PC12 cells, via MTT assay, and in mouse embryonic stem cell (mESC)-derived motor neurons, with imaging-based assays. Following, we tested KX2-361 in mESC-derived motor neurons intoxicated with BoNT/A holotoxin, and the compound exhibited activity against the toxin in both pre- and post-intoxication conditions. Excitingly, KX2-361 also inhibited BoNT/A enzymatic component (light chain; LC) in PC12 cells transfected with BoNT/A LC. Furthermore, our molecular docking analyses suggested that KX2-361 can directly bind to BoNT/A LC. Medicinal chemistry approaches to develop structural analogs of KX2-361 to increase its efficacy against BoNT/A may provide a critical lead compound with BBB penetration capacity for drug development efforts against BoNT/A intoxication.
Collapse
Affiliation(s)
- Dilara Koc
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| | - Kubra Ibis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Peri Besarat
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Erkan Kiris
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| |
Collapse
|
3
|
Yeo JC, Tay FP, Bennion R, Loss O, Maignel J, Pons L, Foster K, Beard M, Bard F. Botulinum toxin intoxication requires retrograde transport and membrane translocation at the ER in RenVM neurons. eLife 2024; 12:RP92806. [PMID: 39196607 DOI: 10.7554/elife.92806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Botulinum neurotoxin A (BoNT/A) is a highly potent proteolytic toxin specific for neurons with numerous clinical and cosmetic uses. After uptake at the synapse, the protein is proposed to translocate from synaptic vesicles to the cytosol through a self-formed channel. Surprisingly, we found that after intoxication proteolysis of a fluorescent reporter occurs in the neuron soma first and then centrifugally in neurites. To investigate the molecular mechanisms at play, we use a genome-wide siRNA screen in genetically engineered neurons and identify over three hundred genes. An organelle-specific split-mNG complementation indicates BoNT/A traffic from the synapse to the soma-localized Golgi in a retromer-dependent fashion. The toxin then moves to the ER and appears to require the Sec61 complex for retro-translocation to the cytosol. Our study identifies genes and trafficking processes hijacked by the toxin, revealing a new pathway mediating BoNT/A cellular toxicity.
Collapse
Affiliation(s)
- Jeremy C Yeo
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Felicia P Tay
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Rebecca Bennion
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, Equipe Leader Fondation ARC 2021, Marseille, France
| | - Omar Loss
- Ipsen Bioinnovation, London, United Kingdom
| | | | | | | | | | - Frederic Bard
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, Equipe Leader Fondation ARC 2021, Marseille, France
| |
Collapse
|
4
|
FDA-Approved Kinase Inhibitors in Preclinical and Clinical Trials for Neurological Disorders. Pharmaceuticals (Basel) 2022; 15:ph15121546. [PMID: 36558997 PMCID: PMC9784968 DOI: 10.3390/ph15121546] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Cancers and neurological disorders are two major types of diseases. We previously developed a new concept termed "Aberrant Cell Cycle Diseases" (ACCD), revealing that these two diseases share a common mechanism of aberrant cell cycle re-entry. The aberrant cell cycle re-entry is manifested as kinase/oncogene activation and tumor suppressor inactivation, which are hallmarks of both tumor growth in cancers and neuronal death in neurological disorders. Therefore, some cancer therapies (e.g., kinase inhibition, tumor suppressor elevation) can be leveraged for neurological treatments. The United States Food and Drug Administration (US FDA) has so far approved 74 kinase inhibitors, with numerous other kinase inhibitors in clinical trials, mostly for the treatment of cancers. In contrast, there are dire unmet needs of FDA-approved drugs for neurological treatments, such as Alzheimer's disease (AD), intracerebral hemorrhage (ICH), ischemic stroke (IS), traumatic brain injury (TBI), and others. In this review, we list these 74 FDA-approved kinase-targeted drugs and identify those that have been reported in preclinical and/or clinical trials for neurological disorders, with a purpose of discussing the feasibility and applicability of leveraging these cancer drugs (FDA-approved kinase inhibitors) for neurological treatments.
Collapse
|
5
|
Human-Induced Pluripotent Stem Cell-Based Models for Studying Sex-Specific Differences in Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1387:57-88. [PMID: 34921676 DOI: 10.1007/5584_2021_683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The prevalence of neurodegenerative diseases is steadily increasing worldwide, and epidemiological studies strongly suggest that many of the diseases are sex-biased. It has long been suggested that biological sex differences are crucial for neurodegenerative diseases; however, how biological sex affects disease initiation, progression, and severity is not well-understood. Sex is a critical biological variable that should be taken into account in basic research, and this review aims to highlight the utility of human-induced pluripotent stem cells (iPSC)-derived models for studying sex-specific differences in neurodegenerative diseases, with advantages and limitations. In vitro systems utilizing species-specific, renewable, and physiologically relevant cell sources can provide powerful platforms for mechanistic studies, toxicity testings, and drug discovery. Matched healthy, patient-derived, and gene-corrected human iPSCs, from both sexes, can be utilized to generate neuronal and glial cell types affected by specific neurodegenerative diseases to study sex-specific differences in two-dimensional (2D) and three-dimensional (3D) human culture systems. Such relatively simple and well-controlled systems can significantly contribute to the elucidation of molecular mechanisms underlying sex-specific differences, which can yield effective, and potentially sex-based strategies, against neurodegenerative diseases.
Collapse
|
6
|
Sen E, Kota KP, Panchal RG, Bavari S, Kiris E. Screening of a Focused Ubiquitin-Proteasome Pathway Inhibitor Library Identifies Small Molecules as Novel Modulators of Botulinum Neurotoxin Type A Toxicity. Front Pharmacol 2021; 12:763950. [PMID: 34646144 PMCID: PMC8503599 DOI: 10.3389/fphar.2021.763950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/14/2021] [Indexed: 01/18/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are known as the most potent bacterial toxins, which can cause potentially deadly disease botulism. BoNT Serotype A (BoNT/A) is the most studied serotype as it is responsible for most human botulism cases, and its formulations are extensively utilized in clinics for therapeutic and cosmetic applications. BoNT/A has the longest-lasting effect in neurons compared to other serotypes, and there has been high interest in understanding how BoNT/A manages to escape protein degradation machinery in neurons for months. Recent work demonstrated that an E3 ligase, HECTD2, leads to efficient ubiquitination of the BoNT/A Light Chain (A/LC); however, the dominant activity of a deubiquitinase (DUB), VCIP135, inhibits the degradation of the enzymatic component. Another DUB, USP9X, was also identified as a potential indirect contributor to A/LC degradation. In this study, we screened a focused ubiquitin-proteasome pathway inhibitor library, including VCIP135 and USP9X inhibitors, and identified ten potential lead compounds affecting BoNT/A mediated SNAP-25 cleavage in neurons in pre-intoxication conditions. We then tested the dose-dependent effects of the compounds and their potential toxic effects in cells. A subset of the lead compounds demonstrated efficacy on the stability and ubiquitination of A/LC in cells. Three of the compounds, WP1130 (degrasyn), PR-619, and Celastrol, further demonstrated efficacy against BoNT/A holotoxin in an in vitro post-intoxication model. Excitingly, PR-619 and WP1130 are known inhibitors of VCIP135 and USP9X, respectively. Modulation of BoNT turnover in cells by small molecules can potentially lead to the development of effective countermeasures against botulism.
Collapse
Affiliation(s)
- Edanur Sen
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Krishna P. Kota
- Therapeutic Discovery Branch, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Rekha G. Panchal
- Therapeutic Discovery Branch, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Sina Bavari
- Edge BioInnovation and Healion Bio, Frederick, MD, United States
| | - Erkan Kiris
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
7
|
Wang L, Yu C, Sun X, Chan SO. Dynamic expression of p75 NTR and Lingo-1 during development of mouse retinofugal pathway. Neurosci Lett 2018; 686:106-111. [PMID: 30201307 DOI: 10.1016/j.neulet.2018.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/30/2018] [Accepted: 09/06/2018] [Indexed: 10/28/2022]
Abstract
Our previous studies showed interaction of Nogo at the midline with its receptor (NgR) on optic axons plays a role in axon divergence at the mouse optic chiasm. Since NgR lacks a cytoplasmic domain, it needs transmembrane receptor partners for signal transduction. In this study, we examined whether the co-receptors of NgR, low-affinity neurotrophic receptor (p75NTR) and Lingo-1, are localized on axons in the mouse optic pathway. In the retina, p75NTR and Lingo-1 were observed on neuroepithelial cells at E13 and later on the retinal ganglion cells at E14 and E15. At the optic disc, p75NTR was observed on the retinal axons, whereas Lingo-1 was found on glial processes surrounding the axon fascicles. Both p75NTR and Lingo-1 were found on axons in the optic stalk, optic chiasm and optic tract. Furthermore, a transient expression of Lingo-1 was observed on the SSEA-1 positive chiasmatic neurons at E13, but not at later developmental stages. The presence of p75NTR and Lingo-1 on optic axons provides further supports to the contribution of Nogo/NgR signaling in axon divergence at the mouse optic chiasm.
Collapse
Affiliation(s)
- Liqing Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Chao Yu
- Center of Health Examination, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Xiaobo Sun
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Sun-On Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
8
|
Konstantinović J, Kiris E, Kota KP, Kugelman-Tonos J, Videnović M, Cazares LH, Terzić Jovanović N, Verbić TŽ, Andjelković B, Duplantier AJ, Bavari S, Šolaja BA. New Steroidal 4-Aminoquinolines Antagonize Botulinum Neurotoxin Serotype A in Mouse Embryonic Stem Cell Derived Motor Neurons in Postintoxication Model. J Med Chem 2018; 61:1595-1608. [PMID: 29385334 DOI: 10.1021/acs.jmedchem.7b01710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The synthesis and inhibitory potencies against botulinum neurotoxin serotype A light chain (BoNT/A LC) using in vitro HPLC based enzymatic assay for various steroidal, benzothiophene, thiophene, and adamantane 4-aminoquinoline derivatives are described. In addition, the compounds were evaluated for the activity against BoNT/A holotoxin in mouse embryonic stem cell derived motor neurons. Steroidal derivative 16 showed remarkable protection (up to 89% of uncleaved SNAP-25) even when administered 30 min postintoxication. This appears to be the first example of LC inhibitors antagonizing BoNT intoxication in mouse embryonic stem cell derived motor neurons (mES-MNs) in a postexposure model. Oral administration of 16 was well tolerated in the mouse up to 600 mg/kg, q.d. Although adequate unbound drug levels were not achieved at this dose, the favorable in vitro ADMET results strongly support further work in this series.
Collapse
Affiliation(s)
- Jelena Konstantinović
- Faculty of Chemistry, University of Belgrade , Studentski trg 16, P.O. Box 51, 11158 Belgrade, Serbia
| | - Erkan Kiris
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute , Frederick, Maryland 21702, United States
| | - Krishna P Kota
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases , 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Johanny Kugelman-Tonos
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases , 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Milica Videnović
- Faculty of Chemistry Innovative Centre , Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Lisa H Cazares
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases , 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Nataša Terzić Jovanović
- Institute of Chemistry, Technology, and Metallurgy, University of Belgrade , Njegoševa 12, 11000 Belgrade, Serbia
| | - Tatjana Ž Verbić
- Faculty of Chemistry, University of Belgrade , Studentski trg 16, P.O. Box 51, 11158 Belgrade, Serbia
| | - Boban Andjelković
- Faculty of Chemistry, University of Belgrade , Studentski trg 16, P.O. Box 51, 11158 Belgrade, Serbia
| | - Allen J Duplantier
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases , 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases , 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Bogdan A Šolaja
- Faculty of Chemistry, University of Belgrade , Studentski trg 16, P.O. Box 51, 11158 Belgrade, Serbia.,Serbian Academy of Sciences and Arts , Knez Mihailova 35, 11158 Belgrade, Serbia
| |
Collapse
|
9
|
Pirazzini M, Rossetto O. Challenges in searching for therapeutics against Botulinum Neurotoxins. Expert Opin Drug Discov 2017; 12:497-510. [DOI: 10.1080/17460441.2017.1303476] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Bremer PT, Adler M, Phung CH, Singh AK, Janda KD. Newly Designed Quinolinol Inhibitors Mitigate the Effects of Botulinum Neurotoxin A in Enzymatic, Cell-Based, and ex Vivo Assays. J Med Chem 2017; 60:338-348. [PMID: 27966961 DOI: 10.1021/acs.jmedchem.6b01393] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Botulinum neurotoxin A (BoNT/A) is one of the most deadly toxins and is the etiological agent of the potentially fatal condition, botulism. Herein, we investigated 8-hydroxyquinoline (quinolin-8-ol) as a potential inhibitor scaffold for preventing the deadly neurochemical effects of the toxin. Quinolinols are known chelators that can disrupt the BoNT/A metalloprotease zinc-containing active site, thus impeding its proteolysis of the endogenous protein substrate, synaptosomal-associated protein 25 (SNAP-25). By use of this information, the structure-activity relationship (SAR) of the quinolinol-5-sulfonamide scaffold was explored through preparation of a crude sulfonamide library and evaluation of the library in a BoNT/A LC enzymatic assay. Potency optimization of the sulfonamide hit compounds was undertaken as informed by docking studies, granting a lead compound with a submicromolar Ki. These quinolinol analogues demonstrated inhibitory activity in a cell-based model for SNAP-25 cleavage and an ex vivo assay for BoNT/A-mediated muscle paralysis.
Collapse
Affiliation(s)
- Paul T Bremer
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Michael Adler
- Neurobehavioral Toxicology Branch, Analytical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense , 2900 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010-5400, United States
| | - Cecilia H Phung
- Neurobehavioral Toxicology Branch, Analytical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense , 2900 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010-5400, United States
| | - Ajay K Singh
- Neurobehavioral Toxicology Branch, Analytical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense , 2900 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010-5400, United States
| | - Kim D Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
11
|
Ambrose EA. Botulinum Neurotoxin, Tetanus Toxin, and Anthrax Lethal Factor Countermeasures. TOPICS IN MEDICINAL CHEMISTRY 2016. [DOI: 10.1007/7355_2016_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Kostrzewa RM, Kostrzewa RA, Kostrzewa JP. Botulinum neurotoxin: Progress in negating its neurotoxicity; and in extending its therapeutic utility via molecular engineering. MiniReview. Peptides 2015; 72:80-7. [PMID: 26192475 DOI: 10.1016/j.peptides.2015.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 07/01/2015] [Accepted: 07/01/2015] [Indexed: 12/12/2022]
Abstract
While the poisonous effects of botulinum neurotoxin (BoNT) have been recognized since antiquity, the overall actions and mechanisms of effects of BoNT have been elucidated primarily over the past several decades. The general utility of BoNT is described in the paper, but the focus is mainly on the approaches towards negating the toxic effects of BoNT, and on the projection of an engineered BoNT molecule serving as a Trojan Horse to deliver a therapeutic load for treatment of a host of medical disorders. The BoNT molecule is configured with a binding domain, a zinc-dependent protease with specificity primarily for vesicular proteins, and a translocation domain for delivery of the metalloprotease into the cytoplasm. The anti-toxin approaches for BoNT include the use of vaccines, antibodies, block of BoNT binding or translocation, inhibition of metalloprotease activity, impeded translocation of the protease/catalytic domain, and inhibition of the downstream Src signaling pathway. Projections of BoNT as a therapeutic include its targeting to non-cholinergic nerves, also targeting to non-neuronal cells for treatment of hypersecretory disorders (e.g., cystic fibrosis), and treatment of hormonal disorders (e.g., acromegaly). Still in the exploratory phase, there is the expectation of major advances in BoNT neuroprotective strategies and burgeoning utility of engineered BoNTs as therapeutics.
Collapse
Affiliation(s)
- Richard M Kostrzewa
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, P.O. Box 70577, Johnson City, TN 37614, USA.
| | | | | |
Collapse
|
13
|
Kiris E, Nuss JE, Stanford SM, Wanner LM, Cazares L, Maestre MF, Du HT, Gomba GY, Burnett JC, Gussio R, Bottini N, Panchal RG, Kane CD, Tessarollo L, Bavari S. Phosphatase Inhibitors Function as Novel, Broad Spectrum Botulinum Neurotoxin Antagonists in Mouse and Human Embryonic Stem Cell-Derived Motor Neuron-Based Assays. PLoS One 2015; 10:e0129264. [PMID: 26061731 PMCID: PMC4462581 DOI: 10.1371/journal.pone.0129264] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/06/2015] [Indexed: 12/05/2022] Open
Abstract
There is an urgent need to develop novel treatments to counter Botulinum neurotoxin (BoNT) poisoning. Currently, the majority of BoNT drug development efforts focus on directly inhibiting the proteolytic components of BoNT, i.e. light chains (LC). Although this is a rational approach, previous research has shown that LCs are extremely difficult drug targets and that inhibiting multi-serotype BoNTs with a single LC inhibitor may not be feasible. An alternative approach would target neuronal pathways involved in intoxication/recovery, rather than the LC itself. Phosphorylation-related mechanisms have been implicated in the intoxication pathway(s) of BoNTs. However, the effects of phosphatase inhibitors upon BoNT activity in the physiological target of BoNTs, i.e. motor neurons, have not been investigated. In this study, a small library of phosphatase inhibitors was screened for BoNT antagonism in the context of mouse embryonic stem cell-derived motor neurons (ES-MNs). Four inhibitors were found to function as BoNT/A antagonists. Subsequently, we confirmed that these inhibitors protect against BoNT/A in a dose-dependent manner in human ES-MNs. Additionally, these compounds provide protection when administered in post-intoxication scenario. Importantly, the inhibitors were also effective against BoNT serotypes B and E. To the best of our knowledge, this is the first study showing phosphatase inhibitors as broad-spectrum BoNT antagonists.
Collapse
Affiliation(s)
- Erkan Kiris
- Geneva Foundation, Tacoma, WA, United States of America
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI), Frederick, MD, United States of America
| | - Jonathan E. Nuss
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Stephanie M. Stanford
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - Laura M. Wanner
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Lisa Cazares
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Michael F. Maestre
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - Hao T. Du
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Glenn Y. Gomba
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - James C. Burnett
- Leidos Biomedical Research, Inc., Computational Drug Development Group (CDDG), NCI, Frederick, MD, United States of America
- CDDG, Developmental Therapeutics Program, NCI, Frederick, MD, United States of America
| | - Rick Gussio
- CDDG, Developmental Therapeutics Program, NCI, Frederick, MD, United States of America
| | - Nunzio Bottini
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - Rekha G. Panchal
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Christopher D. Kane
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
- Henry M. Jackson Foundation, Bethesda, MD, United States of America
- DoD Biotechnology High Performance Computing Software Applications Institute (BHSAI), Telemedicine and Advanced Technology Research Center (TATRC), US Army Medical Research and Materiel Command (USAMRMC), Frederick, MD, United States of America
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI), Frederick, MD, United States of America
| | - Sina Bavari
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| |
Collapse
|
14
|
Chiou E, Zennadi R. Gαs proteins activate p72(Syk) and p60-c-Src tyrosine kinases to mediate sickle red blood cell adhesion to endothelium via LW-αvβ3 and CD44-CD44 interactions. Int J Biochem Cell Biol 2015; 65:40-51. [PMID: 26007235 DOI: 10.1016/j.biocel.2015.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 04/16/2015] [Accepted: 05/14/2015] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptors (GPCRs) have been suggested as new drug targets to treat a variety of diseases. In sickle cell disease (SCD), the LW erythrocyte adhesion receptor can be activated by stimulation of β2 adrenergic receptors (β2ARs), to mediate sickle erythrocyte (SSRBC) adhesion to endothelium. However, the involvement of tyrosine protein kinases in β2AR signaling to activate SSRBC adhesion to endothelium has not been thoroughly elucidated. Either direct activation with Cholera toxin of Gαs protein, which acts downstream of β2ARs, or inhibition with Pertussis toxin of Gαi, mediating suppression of adenylyl cyclase, increased SSRBC adhesion to endothelium over baseline adhesion. This effect involved the non-receptor tyrosine kinases, p72(Syk) and p60-c-Src, which were more abundant in SSRBCs than in normal erythrocytes. In contrast, Pertussis toxin and Cholera toxin failed to increase adhesion of normal erythrocytes. SSRBC Gαi inhibition also increased phosphorylation of p72(Syk) and p60-c-Src. Further, we investigated the relevance of activation of p72(Syk) and p60-c-Src, and identified LW (ICAM-4, CD242) and CD44 as the erythroid adhesion molecules both physically interacting with activated p60-c-Src. As a result, SSRBC LW underwent increased tyrosine phosphorylation, leading to SSRBC LW and CD44 binding to endothelial αvβ3 integrin and CD44, respectively. These data provide in vitro mechanistic evidence that p60-c-Src, which could act downstream of Gαs/p72(Syk), associates with LW and CD44 on SSRBCs leading to their interactions with endothelial αvβ3 and CD44, respectively. Thus, increased activation of these signaling mechanisms in SSRBCs could initiate or exacerbate vascular occlusion, the hallmark of SCD.
Collapse
Affiliation(s)
- Edward Chiou
- Division of Hematology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Rahima Zennadi
- Division of Hematology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|