1
|
Nitta Y, Kurioka T, Mogi S, Sano H, Yamashita T. Suppression of the TGF-β signaling exacerbates degeneration of auditory neurons in kanamycin-induced ototoxicity in mice. Sci Rep 2024; 14:10910. [PMID: 38740884 PMCID: PMC11091189 DOI: 10.1038/s41598-024-61630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Transforming growth factor-β (TGF-β) signaling plays a significant role in multiple biological processes, including inflammation, immunity, and cell death. However, its specific impact on the cochlea remains unclear. In this study, we aimed to investigate the effects of TGF-β signaling suppression on auditory function and cochlear pathology in mice with kanamycin-induced ototoxicity. Kanamycin and furosemide (KM-FS) were systemically administered to 8-week-old C57/BL6 mice, followed by immediate topical application of a TGF-β receptor inhibitor (TGF-βRI) onto the round window membrane. Results showed significant TGF-β receptor upregulation in spiral ganglion neurons (SGNs) after KM-FA ototoxicity, whereas expression levels in the TGF-βRI treated group remained unchanged. Interestingly, despite no significant change in cochlear TGF-β expression after KM-FS ototoxicity, TGF-βRI treatment resulted in a significant decrease in TGF-β signaling. Regarding auditory function, TGF-βRI treatment offered no therapeutic effects on hearing thresholds and hair cell survival following KM-FS ototoxicity. However, SGN loss and macrophage infiltration were significantly increased with TGF-βRI treatment. These results imply that inhibition of TGF-β signaling after KM-FS ototoxicity promotes cochlear inflammation and SGN degeneration.
Collapse
Affiliation(s)
- Yoshihiro Nitta
- Department of Otorhinolaryngology and Head and Neck Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan.
| | - Takaomi Kurioka
- Department of Otorhinolaryngology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Sachiyo Mogi
- Department of Otorhinolaryngology and Head and Neck Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Hajime Sano
- School of Allied Health Sciences, Kitasato University, Kanagawa, Japan
| | - Taku Yamashita
- Department of Otorhinolaryngology and Head and Neck Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| |
Collapse
|
2
|
Li G, Gao Y, Wu H, Zhao T. Gentamicin administration leads to synaptic dysfunction in inner hair cells. Toxicol Lett 2024; 391:86-99. [PMID: 38101494 DOI: 10.1016/j.toxlet.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/17/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Ototoxicity is a major side effect of aminoglycosides, which can cause irreversible hearing loss. Previous studies on aminoglycoside-induced ototoxicity have primarily focused on the loss of sensory hair cells. Recent investigations have revealed that aminoglycosides can also lead to the loss of ribbon synapses in inner hair cells (IHCs). However, the functional implications of ribbon synapse loss and the underlying mechanisms remain unclear. In this study, we intraperitoneally injected C57BL/6 J mice with 300 mg/kg gentamicin once daily for 3, 10, and 20 days. Then, we performed immunofluorescence staining, patch-clamp recording, proteomics analysis and western blotting to characterize the changes in ribbon synapses in IHCs and the associated mechanisms. After gentamicin treatment, the auditory brainstem response (ABR) threshold was elevated, and the ABR wave I amplitude was decreased. We also observed loss of ribbon synapses in IHCs. Interestingly, ribbon synapse loss occurred on both the modiolar and pillar sides of IHCs. Whole-cell patch-clamp recordings in IHCs revealed a reduction in the calcium current amplitude, along with a shifted half-activation voltage and altered calcium voltage dependency. Moreover, exocytosis of IHCs was reduced, consistent with the reduction in the ABR wave I amplitude. Through proteomic analysis, western blotting, and immunofluorescence staining, we found that gentamicin treatment resulted in downregulation of myosin VI, a protein crucial for synaptic vesicle recycling and replenishment in IHCs. Furthermore, we evaluated the kinetics of endocytosis and found a significant reduction in IHC exocytosis, possibly reflecting the impact of myosin VI downregulation on synaptic vesicle recycling. In summary, our findings demonstrate that gentamicin treatment leads to synaptic dysfunction in IHCs, highlighting the important role of myosin VI downregulation in gentamicin-induced synaptic damage.
Collapse
Affiliation(s)
- Gen Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yunge Gao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| | - Ting Zhao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| |
Collapse
|
3
|
Bai Y, Liu J, Wu X, Pang B, Zhang S, Jiang M, Chen A, Huang H, Chen Y, Zeng Y, Mei L, Gao K. Susceptibility of immature spiral ganglion neurons to aminoglycoside-induced ototoxicity is mediated by the TRPV1 channel in mice. Hear Res 2023; 440:108910. [PMID: 37956582 DOI: 10.1016/j.heares.2023.108910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Aminoglycoside antibiotics are among the most common agents that can cause sensorineural hearing loss. From clinical experience, premature babies, whose inner ear is still developing, are more susceptible to aminoglycoside-induced ototoxicity, which is echoed by our previous study carried out in organotypic cultures. This study aimed to investigate whether a nonselective cation channel, TRPV1, contributes to the susceptibility of immature spiral ganglion neurons (SGNs) to the damage caused by aminoglycosides. Through western blotting and immunofluorescence, we found that the TRPV1 expression levels were much higher in immature SGNs than in their mature counterparts. In postnatal day 7 cochlear organotypic cultures, AMG-517 reduced reactive oxygen species generation and inhibited SGN apoptosis under aminoglycoside challenge. However, in adult mice, AMG-517 did not ameliorate the ABR threshold increase at high frequencies (16 kHz and 32 kHz) after aminoglycoside administration, and the SGNs within the cochleae had no morphological changes. By further regulating the function of TRPV1 in primary cultured SGNs with its inhibitor AMG-517 and agonist capsaicin, we demonstrated that TRPV1 is a major channel for aminoglycoside uptake: AMG-517 can significantly reduce, while capsaicin can significantly increase, the uptake of GTTR. In addition, TRPV1 knockdown in SGNs can also significantly reduce the uptake of GTTR. Taken together, our results demonstrated that aminoglycosides can directly enter immature SGNs through the TRPV1 channel. High expression of TRPV1 contributes to the susceptibility of immature SGNs to aminoglycoside-induced damage. The TRPV1 inhibitor AMG-517 has the potential to be a therapeutic agent for preventing aminoglycoside-induced ototoxicity in immature SGNs.
Collapse
Affiliation(s)
- Yijiang Bai
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, PR China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, PR China; Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Jing Liu
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, PR China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, PR China; Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Xuewen Wu
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, PR China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, PR China; Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Bo Pang
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, PR China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, PR China; Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China; Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, PR China
| | - Shuai Zhang
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, PR China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, PR China; Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Mengzhu Jiang
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, PR China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, PR China; Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Anhai Chen
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, PR China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, PR China; Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Huping Huang
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, PR China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, PR China; Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Yongjia Chen
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, PR China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, PR China; Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Yuan Zeng
- Patient Service Center, Xiangya Hospital Central South University, Changsha, PR China
| | - Lingyun Mei
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, PR China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, PR China; Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China.
| | - Kelei Gao
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, PR China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, PR China; Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China.
| |
Collapse
|
4
|
Krix S, DeLong LN, Madan S, Domingo-Fernández D, Ahmad A, Gul S, Zaliani A, Fröhlich H. MultiGML: Multimodal graph machine learning for prediction of adverse drug events. Heliyon 2023; 9:e19441. [PMID: 37681175 PMCID: PMC10481305 DOI: 10.1016/j.heliyon.2023.e19441] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Adverse drug events constitute a major challenge for the success of clinical trials. Several computational strategies have been suggested to estimate the risk of adverse drug events in preclinical drug development. While these approaches have demonstrated high utility in practice, they are at the same time limited to specific information sources. Thus, many current computational approaches neglect a wealth of information which results from the integration of different data sources, such as biological protein function, gene expression, chemical compound structure, cell-based imaging and others. In this work we propose an integrative and explainable multi-modal Graph Machine Learning approach (MultiGML), which fuses knowledge graphs with multiple further data modalities to predict drug related adverse events and general drug target-phenotype associations. MultiGML demonstrates excellent prediction performance compared to alternative algorithms, including various traditional knowledge graph embedding techniques. MultiGML distinguishes itself from alternative techniques by providing in-depth explanations of model predictions, which point towards biological mechanisms associated with predictions of an adverse drug event. Hence, MultiGML could be a versatile tool to support decision making in preclinical drug development.
Collapse
Affiliation(s)
- Sophia Krix
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757, Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53115, Bonn, Germany
- Fraunhofer Center for Machine Learning, Germany
| | - Lauren Nicole DeLong
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757, Sankt Augustin, Germany
- Artificial Intelligence and its Applications Institute, School of Informatics, University of Edinburgh, 10 Crichton Street, EH8 9AB, UK
| | - Sumit Madan
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757, Sankt Augustin, Germany
- Department of Computer Science, University of Bonn, 53115, Bonn, Germany
| | - Daniel Domingo-Fernández
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757, Sankt Augustin, Germany
- Fraunhofer Center for Machine Learning, Germany
- Enveda Biosciences, Boulder, CO, 80301, USA
| | - Ashar Ahmad
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53115, Bonn, Germany
- Grunenthal GmbH, 52099, Aachen, Germany
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, 22525, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Schnackenburgallee 114, 22525, Hamburg, Germany
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, 22525, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Schnackenburgallee 114, 22525, Hamburg, Germany
| | - Holger Fröhlich
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757, Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53115, Bonn, Germany
| |
Collapse
|
5
|
Wu H, Ou Y, Wang S, Yu F, Fan X, Kang H, Chen T. Considering the protective effect of exendin-4 against oxidative stress in spiral ganglion neurons. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:1423-1430. [PMID: 37970444 PMCID: PMC10634057 DOI: 10.22038/ijbms.2023.69190.15076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/30/2023] [Indexed: 11/17/2023]
Abstract
Objectives The protection of spiral ganglion neurons (SGNs) is crucial for hearing loss. Exendin-4 has been shown to have neuroprotective effects in several neurological disorders. Therefore, this study aimed to investigate the effect of the glucagon-like protein-1 receptor (GLP-1R) agonist exendin-4 on kanamycin-induced injury in mouse SGNs in vitro. Materials and Methods In this study, GLP-1R expression in SGNs was verified by immunofluorescence and immunohistochemical staining. In vitro-cultured SGNs and the organ of Corti were exposed to kanamycin with or without exendin-4 treatment. The cell survival rate was measured using the cell counting kit-8 assay, and the damage to auditory nerve fibers (ANF) projecting radially from the SGNs was evaluated using immunofluorescence staining. Reactive oxygen species (ROS) content was determined by flow cytometry, and glutathione peroxidase (GSH-Px) content, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) content were determined by spectrophotometry. Protein expression of nuclear factor erythroid-2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) was detected using western blotting. Results GLP-1R was expressed in SGNs. Treatment with 1 mM kanamycin for 24 hr induced SGN damage. Exendin-4 (100 nM) had a protective effect against kanamycin-induced SGN cell injury, improved cell survival rate, reduced nerve fiber injury, increased SOD activity and GSH-Px level, and reduced MDA and ROS contents. The Nrf2/HO-1 pathway was activated. Conclusion Exendin-4 alleviates oxidative damage and exerts neuroprotective effects in kanamycin-induced SGN injury through the Nrf2/HO-1 signaling pathway. Exendin-4 has the potential to prevent or treat hearing loss due to SGN damage.
Collapse
Affiliation(s)
- Hongxia Wu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical Chongqing, China
| | - Yangxi Ou
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical Chongqing, China
| | - Siji Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical Chongqing, China
| | - Fenghui Yu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical Chongqing, China
| | - Xiaoxia Fan
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical Chongqing, China
| | - Houyong Kang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical Chongqing, China
| | - Tao Chen
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical Chongqing, China
| |
Collapse
|
6
|
Huang J, Sun X, Wang H, Chen R, Yang Y, Hu J, Zhang Y, Gui F, Huang J, Yang L, Hong Y. Conditional overexpression of neuritin in supporting cells (SCs) mitigates hair cell (HC) damage and induces HC regeneration in the adult mouse cochlea after drug-induced ototoxicity. Hear Res 2022; 420:108515. [DOI: 10.1016/j.heares.2022.108515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/04/2022]
|
7
|
Wang Q, Shen Y, Pan Y, Chen K, Ding R, Zou T, Zhang A, Guo D, Ji P, Fan C, Mei L, Hu H, Ye B, Xiang M. Tlr2/4 Double Knockout Attenuates the Degeneration of Primary Auditory Neurons: Potential Mechanisms From Transcriptomic Perspectives. Front Cell Dev Biol 2021; 9:750271. [PMID: 34760891 PMCID: PMC8573328 DOI: 10.3389/fcell.2021.750271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022] Open
Abstract
The transcriptomic landscape of mice with primary auditory neurons degeneration (PAND) indicates key pathways in its pathogenesis, including complement cascades, immune responses, tumor necrosis factor (TNF) signaling pathway, and cytokine-cytokine receptor interaction. Toll-like receptors (TLRs) are important immune and inflammatory molecules that have been shown to disrupt the disease network of PAND. In a PAND model involving administration of kanamycin combined with furosemide to destroy cochlear hair cells, Tlr 2/4 double knockout (DKO) mice had auditory preservation advantages, which were mainly manifested at 4–16 kHz. DKO mice and wild type (WT) mice had completely damaged cochlear hair cells on the 30th day, but the density of spiral ganglion neurons (SGN) in the Rosenthal canal was significantly higher in the DKO group than in the WT group. The results of immunohistochemistry for p38 and p65 showed that the attenuation of SGN degeneration in DKO mice may not be mediated by canonical Tlr signaling pathways. The SGN transcriptome of DKO and WT mice indicated that there was an inverted gene set enrichment relationship between their different transcriptomes and the SGN degeneration transcriptome, which is consistent with the morphology results. Core module analysis suggested that DKO mice may modulate SGN degeneration by activating two clusters, and the involved molecules include EGF, STAT3, CALB2, LOX, SNAP25, CAV2, SDC4, MYL1, NCS1, PVALB, TPM4, and TMOD4.
Collapse
Affiliation(s)
- Quan Wang
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilin Shen
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Pan
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaili Chen
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Ding
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyuan Zou
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Andi Zhang
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongye Guo
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peilin Ji
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cui Fan
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Mei
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haixia Hu
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Ye
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingliang Xiang
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Ding D, Qi W, Jiang H, Salvi R. Excitotoxic damage to auditory nerve afferents and spiral ganglion neurons is correlated with developmental upregulation of AMPA and KA receptors. Hear Res 2021; 411:108358. [PMID: 34607211 DOI: 10.1016/j.heares.2021.108358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/29/2021] [Accepted: 09/21/2021] [Indexed: 12/31/2022]
Abstract
Excess release of glutamate at the inner hair cell-type I auditory nerve synapse results in excitotoxicity characterized by rapid swelling and disintegration of the afferent synapses, but in some cases, the damage expands to the spiral ganglion soma. Cochlear excitotoxic damage is largely mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR) and kainate receptor (KAR) and potentially N-methyl-D-aspartate receptors (NMDAR). Because these receptors are developmentally regulated, the pattern of excitotoxic damage could change during development. To test this hypothesis, we compared AMPAR, NMDAR and KAR immunolabeling and excitotoxic damage patterns in rat postnatal day 3 (P3) and adult cochlear cultures. At P3, AMPAR and KAR immunolabeling, but not NMDAR, was abundantly expressed on peripheral nerve terminals adjacent to IHCs. In contrast, AMPAR, KAR and NMDAR immunolabeling was minimal or undetectable on the SGN soma. In adult rats, however, AMPAR, KAR and NMDAR immunolabeling occurred on both peripheral nerve terminals near IHCs as well as the soma of SGNs. High doses of Glu and KA only damaged peripheral nerve terminals near IHCs, but not SGNs, at P3, consistent with selective expression of AMPAR and KAR expression on the terminals. However, in adults, Glu and KA damaged both peripheral nerve terminals near IHCs and SGNs both of which expressed AMPAR and KAR. These results indicate that cochlear excitotoxic damage is closely correlated with structures that express AMPAR and KAR.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14214, USA
| | - Weidong Qi
- Department of Otolaryngology, Huashan Hospital Fudan University, Shanghai 200040, China
| | - Haiyan Jiang
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14214, USA.
| |
Collapse
|
9
|
Shen Y, Hu H, Fan C, Wang Q, Zou T, Ye B, Xiang M. Sensorineural hearing loss may lead to dementia-related pathological changes in hippocampal neurons. Neurobiol Dis 2021; 156:105408. [PMID: 34082124 DOI: 10.1016/j.nbd.2021.105408] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 01/23/2023] Open
Abstract
Presbycusis contributes to cognitive decline and Alzheimer's disease. However, most research in this area involves clinical observations and statistical modeling, and few studies have examined the relationship between hearing loss and the molecular changes that lead to cognitive dysfunction. The present study investigated whether hearing loss contributes to dementia in the absence of aging and noise using a mouse model of severe bilateral hearing loss induced by kanamycin (1000 mg/kg) and furosemide (400 mg/kg). Immunohistochemistry, silver staining, immunofluorescence analysis, and Western blotting were used to observe pathological changes in different regions of the hippocampus in animals with hearing loss. Changes in the cognitive function of animals with hearing loss were assessed using the Morris water maze test. The results showed that neurons began to degenerate 60 days after hearing loss, and this degeneration was accompanied by structural disorganization and decreased neurogenesis. The level of phosphorylated tau increased over time. Increases in escape latency and distance traveled during the training phase of the Morris water maze test were observed 90 days after hearing loss. Activated microglia and astrocytes with increased levels of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were detected in the hippocampus. These results suggest that hearing loss alone causes neuronal degeneration, inhibition of neurogenesis, increased tau protein phosphorylation, and increased neuroinflammation in the hippocampus. Early intervention in individuals with hearing loss may reduce the risk of cognitive decline.
Collapse
Affiliation(s)
- Yilin Shen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Haixia Hu
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Cui Fan
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Quan Wang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Tianyuan Zou
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Bin Ye
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| | - Mingliang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| |
Collapse
|
10
|
Sex differences in the auditory functions of rodents. Hear Res 2021; 419:108271. [PMID: 34074560 DOI: 10.1016/j.heares.2021.108271] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/07/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND In humans, it is well known that females have better hearing than males. The mechanism of this influence of sex on auditory function in humans is not well understood. Testing the hypothesis of underlying mechanisms often relies on preclinical research, a field in which sex bias still exists unconsciously. Rodents are popular research models in hearing, thus it is crucial to understand the sex differences in these rodent models when studying health and disease in humans. OBJECTIVES This review aims to summarize the existing sex differences in the auditory functions of rodent species including mouse, rat, Guinea pig, Mongolian gerbil, and chinchilla. In addition, a concise summary of the hearing characteristics and the advantages and the drawbacks of conducting auditory experiments in each rodent species is provided. DESIGNS Manuscripts were identified in PubMed and Ovid Medline for the queries "Rodent", "Sex Characteristics", and "Hearing or Auditory Function". Manuscripts were included if they were original research, written in English, and use rodents. The content of each manuscript was screened for the sex of the rodents and the discussion of sex-based results. CONCLUSIONS The sex differences in auditory function of rodents are prevalent and influenced by multiple factors including physiological mechanisms, sex-based anatomical variations, and stimuli from the external environment. Such differences may play a role in understanding and explaining sex differences in hearing of humans and need to be taken into consideration for developing clinical therapies aim to improve auditory performances.
Collapse
|
11
|
Abd-Elhakim YM, Abdel-Motal SM, Malhat SM, Mostafa HI, Moselhy AAA, Beheiry RR, Said EN. Curcumin mitigates neurotoxic and neurobehavioral changes of gentamicin and sodium salicylate in rats by adjusting oxidative stress and apoptosis. Life Sci 2020; 265:118824. [PMID: 33278387 DOI: 10.1016/j.lfs.2020.118824] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
Currently, antibiotics and salicylates are the most highly consumed medications worldwide. The side effects of these pharmaceuticals on the nervous system have been little investigated. Thus, this study aimed to examine the influence of the gentamicin (GM) and sodium salicylates (SS) on neurobehavioral functions, including locomotors function, memory, and sensorimotor functions together with gamma-aminobutyric acid (GABA) neurotransmitter levels. Also, oxidative stress, lipid peroxidation, and apoptotic indicators of brain tissue were assessed. Additionally, the histopathological architecture of brain tissues was investigated. This study also evaluated the curcumin (CUR) efficacy to counteract the GM or SS induced neurotoxic impacts in rats. For this purpose, seven groups were administered physiological saline (1 ml/rat; orally), olive oil (1 ml/rat; orally), CUR (50 mg/kg bwt; orally), GM (120 mg/kg bwt; intraperitoneally), SS (300 mg /kg bwt; intraperitoneally), CUR + GM, or CUR + SS for consecutive 15 days. The results revealed that GM and SS exposure evoked impaired memory, sensorimotor deficit functions, and depressive-like behavior together with the depletion of GABA. GM and SS exposure elevated malondialdehyde and Caspase-3 levels, but total antioxidant capacity and Bcl-2 levels were reduced. Besides, GM and SS exposure induced distinct pathological perturbations in cerebral cortices and hippocampus tissues. CUR significantly reversed the GM and SS harmful impacts. In conclusion, these findings verified that CUR could be a biologically efficient protective intervention against GM and SS induced neurotoxic impacts and neurobehavioral aberrations.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Sabry M Abdel-Motal
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Hend I Mostafa
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Attia A A Moselhy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Rasha R Beheiry
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Enas N Said
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
12
|
Some Ototoxic Drugs Destroy Cochlear Support Cells Before Damaging Sensory Hair Cells. Neurotox Res 2020; 37:743-752. [PMID: 31997155 DOI: 10.1007/s12640-020-00170-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/07/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
Abstract
A wide variety of ototoxic drugs are capable of damaging the sensory hair cells in the mammalian cochlea resulting in permanent hearing loss. However, the toxic properties of these drugs suggest that some could potentially damage cochlear support cells as well. To test the hypothesis, we treated postnatal day three rat cochlear cultures with toxic doses of gentamicin, cisplatin, mefloquine, and cadmium. Gentamicin primarily destroyed the hair cells and disrupted the intercellular connection with the surrounding support cells. Gentamicin-induced hair cell death was initiated through the caspase-9 intrinsic apoptotic pathway followed by activation of downstream executioner caspase-3. In contrast, cisplatin, mefloquine, and cadmium initially damaged the support cells and only later damaged the hair cells. Support cell death was initiated through the caspase-8 extrinsic apoptotic pathway followed later by downstream activation of caspase-3. Cisplatin, mefloquine, and cadmium significantly reduced the expression of actin and laminin, in the extracellular matrix, leading to significant disarray of the sensory epithelium.
Collapse
|
13
|
Yan S, Lai X, Wang Y, Ye N, Xiang Y. Label free aptasensor for ultrasensitive detection of tobramycin residue in pasteurized cow's milk based on resonance scattering spectra and nanogold catalytic amplification. Food Chem 2019; 295:36-41. [PMID: 31174769 DOI: 10.1016/j.foodchem.2019.05.110] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022]
Abstract
TOB aptamer can be adsorbed on the AuNPs surface to form AuNPs-aptamer complexation to prevent AuNPs aggregation in high salt solution. When TOB was added to the AuNPs solution, the aptamer would bind with TOB and depart from the AuNPs surface. The amount of the AuNPs-aptamer complexation depends on the TOB concentration. Different concentration of AuNPs-aptamer can catalyze the reduction reaction of CuSO4 to produce different size Cu2O particle. The resonance scattering peak intensities are correlated with the Cu2O size. Large size Cu2O particle as a resonance scattering spectroscopy probe can remarkable improve the TOB detection sensitivity. We have succeeded to detect the trace TOB in aqueous solutions. The linear range and limit of detection were 0.50-17 nM and 0.19 nM, respectively. This simple and inexpensive method exhibited high sensitivity and selectivity, which was successfully used to detect TOB in milk. The results indicated the accuracy and precision were satisfied.
Collapse
Affiliation(s)
- Shang Yan
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Xiaoxia Lai
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yuxian Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Nengsheng Ye
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Yuhong Xiang
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
14
|
Ye B, Wang Q, Hu H, Shen Y, Fan C, Chen P, Ma Y, Wu H, Xiang M. Restoring autophagic flux attenuates cochlear spiral ganglion neuron degeneration by promoting TFEB nuclear translocation via inhibiting MTOR. Autophagy 2019; 15:998-1016. [PMID: 30706760 PMCID: PMC6526833 DOI: 10.1080/15548627.2019.1569926] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Macroautophagy/autophagy dysfunction is associated with many neurodegenerative diseases. TFEB (transcription factor EB), an important molecule that regulates lysosomal and autophagy function, is regarded as a potential target for treating some neurodegenerative diseases. However, the relationship between autophagy dysfunction and spiral ganglion neuron (SGN) degeneration and the role of TFEB in SGN degeneration has not yet been established. Here, we showed that in degenerated SGNs, induced by sensory epithelial cell loss in the cochlea of mice following kanamycin and furosemide administration, the lipofuscin area and oxidative stress level were increased, the nuclear-to-cytoplasmic TFEB ratio was decreased, and the late stage of autophagic flux was impaired. After autophagy dysfunction was partially ameliorated with an MTOR inhibitor, which promoted TFEB translocation into the nucleus from the cytoplasm, we found that the lysosomal deficits were significantly relieved, the oxidative stress level was reduced, and the density of surviving SGNs and auditory nerve fibers was increased. The results in the present study reveal that autophagy dysfunction is an important component of SGN degeneration, and TFEB may be a potential target for attenuating SGN degeneration following sensory epithelial cell loss in the cochlea of mice. Abbreviations: 3-NT: 3-nitrotyrosine; 4-HNE: 4-hydroxynonenal; 8-OHdG: 8-hydroxy-2ʹ-deoxyguanosine; ABR: auditory brainstem response; APP: amyloid beta (A4) precursor protein; CLEAR: coordinated lysosomal expression and regulation; CTSB: cathespin B; CTSD: cathespin D; SAMR1: senescence-accelerated mouse/resistance 1; SAMP8: senescence-accelerated mouse/prone 8; MAPK1/ERK2: mitogen-activated protein kinase 1; MTOR: mechanistic target of rapamycin kinase; SGN: spiral ganglion neuron; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscope; TFEB: transcription factor EB
Collapse
Affiliation(s)
- Bin Ye
- a Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China.,b Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China.,c Ear Institute , Shanghai Jiao tong University School of Medicine , Shanghai , China
| | - Quan Wang
- a Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China.,b Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China.,c Ear Institute , Shanghai Jiao tong University School of Medicine , Shanghai , China
| | - Haixia Hu
- a Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China.,b Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China.,c Ear Institute , Shanghai Jiao tong University School of Medicine , Shanghai , China
| | - Yilin Shen
- a Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China.,b Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China.,c Ear Institute , Shanghai Jiao tong University School of Medicine , Shanghai , China
| | - Cui Fan
- a Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China.,b Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China.,c Ear Institute , Shanghai Jiao tong University School of Medicine , Shanghai , China
| | - Penghui Chen
- b Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China.,c Ear Institute , Shanghai Jiao tong University School of Medicine , Shanghai , China
| | - Yan Ma
- b Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China.,c Ear Institute , Shanghai Jiao tong University School of Medicine , Shanghai , China
| | - Hao Wu
- b Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China.,c Ear Institute , Shanghai Jiao tong University School of Medicine , Shanghai , China
| | - Mingliang Xiang
- a Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China.,b Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China.,c Ear Institute , Shanghai Jiao tong University School of Medicine , Shanghai , China
| |
Collapse
|
15
|
Ye H, Xing Y, Zhang L, Zhang J, Jiang H, Ding D, Shi H, Yin S. Bilirubin-induced neurotoxic and ototoxic effects in rat cochlear and vestibular organotypic cultures. Neurotoxicology 2018; 71:75-86. [PMID: 30578813 DOI: 10.1016/j.neuro.2018.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022]
Abstract
Exposure to high levels of bilirubin in hyperbilirubinemia patients and animal models can result in sensorineural deafness. However, the mechanisms underlying bilirubin-induced damage to the inner ear, including the cochlear and vestibular organs, remain unknown. The present analyses of cochlear and vestibular organotypic cultures obtained from postnatal day 3 rats exposed to bilirubin at varying concentrations (0, 10, 50, 100, or 250 μM) for 24 h revealed that auditory nerve fibers (ANFs) and vestibular nerve endings were destroyed even at low doses (10 and 50 μM). Additionally, as the bilirubin dose increased, spiral ganglion neurons (SGNs) and vestibular ganglion neurons (VGNs) exhibited gradual shrinkage in conjunction with nuclei condensation or fragmentation in a dose-dependent manner. The loss of cochlear and vestibular hair cells (HCs) was only evident in explants treated with the highest concentration of bilirubin (250 μM), and bilirubin-induced major apoptosis most likely occurred via the extrinsic apoptotic pathway. Thus, the present results indicate that inner ear neurons and fibers were more sensitive to, and exhibited more severe damage following, bilirubin-induced neurotoxicity than sensory HCs, which illustrates the underlying causes of auditory neuropathy and vestibulopathy in hyperbilirubinemia patients.
Collapse
Affiliation(s)
- Haibo Ye
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, PR China
| | - Yazhi Xing
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, PR China
| | - Ling Zhang
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, PR China
| | - Jianhui Zhang
- Department of Otolaryngology Head and Neck Surgery, The Third People's Hospital of Chengdu, PR China
| | - Haiyan Jiang
- Center for Hearing and Deafness, Department of Communicative Disorders and Sciences State, University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Dalian Ding
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, PR China; Center for Hearing and Deafness, Department of Communicative Disorders and Sciences State, University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Haibo Shi
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, PR China.
| | - Shankai Yin
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, PR China
| |
Collapse
|
16
|
Secondary Degeneration of Auditory Neurons after Topical Aminoglycoside Administration in a Gerbil Model. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9158187. [PMID: 29687008 PMCID: PMC5852872 DOI: 10.1155/2018/9158187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/29/2017] [Accepted: 01/09/2018] [Indexed: 01/20/2023]
Abstract
Hair cells in the cochlea can be damaged by various causes. Damaged hair cells can lead to additional destruction of parts of the auditory afferent pathway sequentially, which is called secondary degeneration. Recently, researches regarding cochlear implants have been actively carried out for clinical purposes; secondary degeneration in animals is a much more practical model for identifying the prognosis of cochlear implants. However, an appropriate model for this research is not established yet. Thus, we developed a secondary degeneration model using an ototoxic drug. 35 gerbils were separated into four different groups and kanamycin was applied via various approaches. ABR was measured several times after drug administration. SGCs were also counted to identify any secondary degeneration. The results showed that outer and inner HCs were damaged in all kanamycin-treated groups. Twelve weeks after kanamycin treatment, the round window membrane injection group showed severe subject differences in hair cells and SGC damage, whereas the gelfoam group showed consistent and severe damage in hair cells and SGCs. In this study, we successfully induced secondary degeneration in hair cells in a gerbil model. This model can be used for various purposes in the hearing research area either for treatment or for preservation.
Collapse
|