1
|
Soares J, Costa VM, Bastos MDL, Carvalho F, Capela JP. An updated review on synthetic cathinones. Arch Toxicol 2021; 95:2895-2940. [PMID: 34100120 DOI: 10.1007/s00204-021-03083-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
Cathinone, the main psychoactive compound found in the plant Catha edulis Forsk. (khat), is a β-keto analogue of amphetamine, sharing not only the phenethylamine structure, but also the amphetamine-like stimulant effects. Synthetic cathinones are derivatives of the naturally occurring cathinone that largely entered the recreational drug market at the end of 2000s. The former "legal status", impressive marketing strategies and their commercial availability, either in the so-called "smartshops" or via the Internet, prompted their large spread, contributing to their increasing popularity in the following years. As their popularity increased, the risks posed for public health became clear, with several reports of intoxications and deaths involving these substances appearing both in the social media and scientific literature. The regulatory measures introduced thereafter to halt these trending drugs of abuse have proved to be of low impact, as a continuous emergence of new non-controlled derivatives keep appearing to replace those prohibited. Users resort to synthetic cathinones due to their psychostimulant properties but are often unaware of the dangers they may incur when using these substances. Therefore, studies aimed at unveiling the pharmacological and toxicological properties of these substances are imperative, as they will provide increased expertise to the clinicians that face this problem on a daily basis. The present work provides a comprehensive review on history and legal status, chemistry, pharmacokinetics, pharmacodynamics, adverse effects and lethality in humans, as well as on the current knowledge of the neurotoxic mechanisms of synthetic cathinones.
Collapse
Affiliation(s)
- Jorge Soares
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Vera Marisa Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - João Paulo Capela
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
- FP-ENAS (Fernando Pessoa Energy, Environment and Health Research Unit), CEBIMED (Biomedical Research Centre), Faculty of Health Sciences, University of Fernando Pessoa, Porto, Portugal.
| |
Collapse
|
2
|
4′-Fluoropyrrolidinononanophenone elicits neuronal cell apoptosis through elevating production of reactive oxygen and nitrogen species. Forensic Toxicol 2020. [DOI: 10.1007/s11419-020-00550-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
3
|
Wang F, Zhang C, Hou S, Geng X. Synergistic Effects of Mesenchymal Stem Cell Transplantation and Repetitive Transcranial Magnetic Stimulation on Promoting Autophagy and Synaptic Plasticity in Vascular Dementia. J Gerontol A Biol Sci Med Sci 2020; 74:1341-1350. [PMID: 30256913 DOI: 10.1093/gerona/gly221] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Indexed: 02/07/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) and mesenchymal stem cells (MSCs) transplantation both showed therapeutic effects on cognition impairment in vascular dementia (VD) model rats. However, whether these two therapies have synergistic effects and the molecular mechanisms remain unclear. In our present study, rats were randomly divided into six groups: control group, sham operation group, VD group, MSC group, rTMS group, and MSC+rTMS group. The VD model rats were prepared using a modified 2VO method. rTMS treatment was implemented at a frequency of 5 Hz, the stimulation intensity for 0.5 Tesla, 20 strings every day with 10 pulses per string and six treatment courses. The results of the Morris water maze test showed that the learning and memory abilities of the MSC group, rTMS group, and MSC+rTMS group were better than that of the VD group, and the MSC+rTMS group showed the most significant effect. The protein expression levels of brain-derived neurotrophic factor, NR1, LC3-II, and Beclin-1 were the highest and p62 protein was the lowest in the MSC+rTMS group. Our findings demonstrated that rTMS could further enhance the effect of MSC transplantation on VD rats and provided an important basis for the combined application of MSC transplantation and rTMS to treat VD or other neurological diseases.
Collapse
Affiliation(s)
- Fei Wang
- Department of Neurology, General Hospital, Tianjin Medical University, China
| | - Chi Zhang
- Department of Neurology, General Hospital, Tianjin Medical University, China
| | - Siyuan Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, China
| | - Xin Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, China
| |
Collapse
|
4
|
Wojcieszak J, Kuczyńska K, Zawilska JB. Four Synthetic Cathinones: 3-Chloromethcathinone, 4-Chloromethcathinone, 4-Fluoro-α-Pyrrolidinopentiophenone, and 4-Methoxy-α-Pyrrolidinopentiophenone Produce Changes in the Spontaneous Locomotor Activity and Motor Performance in Mice with Varied Profiles. Neurotox Res 2020; 38:536-551. [PMID: 32506339 PMCID: PMC7334283 DOI: 10.1007/s12640-020-00227-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 12/26/2022]
Abstract
Two chloromethcathinones, 3-chloromethcathinone (3-CMC) and 4-chloromethcathinone (4-CMC), and two para-substituted α-pyrrolidinophenones, 4-methoxy-α-pyrrolidinopentiophenone (4-MeO-PVP) and 4-fluoro-α-pyrrolidinopentiophenone (4-F-PVP), represent synthetic cathinones, the second most frequently abused group of new psychoactive substances (NPSs), which has aroused a worldwide health concern in the last decade. Synthetic cathinones act as psychostimulants by elevating extracellular levels of monoaminergic neurotransmitters. This study investigates effects of 3-CMC, 4-CMC, 4-MeO-PVP, and 4-F-PVP on the spontaneous locomotor activity and motor performance of mice. Additionally, neurotoxicity of substituted methcathinones against SH-SY5Y neuroblastoma cells was evaluated. All test cathinones stimulate in a dose-dependent manner horizontal locomotor activity of mice. Consistently to our prior findings, pyrrovalerones, but not methcathinone derivatives, produce dose-dependent elevation of vertical locomotor activity (rearing behavior). None of the tested compounds decreases the time spent on the accelerating rotarod, pointing to the lack of considerable motor disability in mice after acute exposition. Only 4-MeO-PVP at the high tested dose (20 mg/kg) increases motor performance of mice. Considering that α-pyrrolidinophenones are highly potent and selective DA uptake inhibitors, while chloromethcathinones enhance non-selective DA/5-HT release, we suggest that the increase of vertical locomotor activity and performance on rotarod in mice may serve as a behavioral indicator of the monoaminergic profile of synthetic cathinones. Finally, this study gives first insights into cytotoxicity of both 3-CMC and 4-CMC displayed against SH-SY5Y cells, which emerges and intensifies after prolonged incubation, suggesting the indirect mechanism of action, unrelated to interactions with monoamine transporters.
Collapse
Affiliation(s)
- Jakub Wojcieszak
- Department of Pharmacodynamics, Medical University of Lodz, 90-151, Lodz, Poland.
| | - Katarzyna Kuczyńska
- Department of Pharmacodynamics, Medical University of Lodz, 90-151, Lodz, Poland
| | - Jolanta B Zawilska
- Department of Pharmacodynamics, Medical University of Lodz, 90-151, Lodz, Poland
| |
Collapse
|
5
|
Vaz I, Carvalho T, Valente MJ, Castro A, Araújo AM, Bastos ML, Carvalho M. The interplay between autophagy and apoptosis mediates toxicity triggered by synthetic cathinones in human kidney cells. Toxicol Lett 2020; 331:42-52. [PMID: 32464236 DOI: 10.1016/j.toxlet.2020.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/06/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022]
Abstract
Synthetic cathinones abuse remains a serious public health problem. Kidney injury has been reported in intoxications associated with synthetic cathinones, but the molecular mechanisms involved have not been explored yet. In this study, the potential in vitro nephrotoxic effects of four commonly abused cathinone derivatives, namely pentedrone, 3,4-dimethylmethcatinone (3,4-DMMC), methylone and 3,4-methylenedioxypyrovalerone (MDPV), were assessed in the human kidney HK-2 cell line. All four derivatives elicited cell death in a concentration- and time-dependent manner, in the following order of potency: 3,4-DMMC >> MDPV > methylone ≈ pentedrone. 3,4-DMMC and methylone were selected to further elucidate the mechanisms behind synthetic cathinones-induced cell death. Both drugs elicited apoptotic cell death and prompted the formation of acidic vesicular organelles and autophagosomes in HK-2 cells. Moreover, the autophagy inhibitor 3-methyladenine significantly potentiated cell death, indicating that autophagy may serve as a cell survival mechanism that protects renal cells against synthetic cathinones toxicity. Both drugs triggered a rise in reactive oxygen and nitrogen species formation, which was completely prevented by antioxidant treatment with N‑acetyl‑L‑cysteine or ascorbic acid. Importantly, these antioxidant agents significantly aggravated renal cell death induced by cathinone derivatives, most likely due to their autophagy-blocking properties. Taken together, our results support an intricate control of cell survival/death modulated by oxidative stress, apoptosis and autophagy in synthetic cathinones-induced renal injury.
Collapse
Affiliation(s)
- I Vaz
- UFP Energy, Environment and Health Research Unit (FP-ENAS), University Fernando Pessoa, Praça Nove de Abril, 349, 4249-004, Porto, Portugal
| | - T Carvalho
- UFP Energy, Environment and Health Research Unit (FP-ENAS), University Fernando Pessoa, Praça Nove de Abril, 349, 4249-004, Porto, Portugal
| | - M J Valente
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - A Castro
- UFP Energy, Environment and Health Research Unit (FP-ENAS), University Fernando Pessoa, Praça Nove de Abril, 349, 4249-004, Porto, Portugal
| | - A M Araújo
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - M L Bastos
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - M Carvalho
- UFP Energy, Environment and Health Research Unit (FP-ENAS), University Fernando Pessoa, Praça Nove de Abril, 349, 4249-004, Porto, Portugal; UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
6
|
Soares J, Costa VM, Gaspar H, Santos S, Bastos MDL, Carvalho F, Capela JP. Adverse outcome pathways induced by 3,4-dimethylmethcathinone and 4-methylmethcathinone in differentiated human SH-SY5Y neuronal cells. Arch Toxicol 2020; 94:2481-2503. [PMID: 32382956 DOI: 10.1007/s00204-020-02761-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/22/2020] [Indexed: 12/27/2022]
Abstract
Cathinones (β-keto amphetamines), widely abused in recreational settings, have been shown similar or even worse toxicological profile than classical amphetamines. In the present study, the cytotoxicity of two β-keto amphetamines [3,4-dimethylmethcathinone (3,4-DMMC) and 4-methylmethcathinone (4-MMC)], was evaluated in differentiated dopaminergic SH-SY5Y cells in comparison to methamphetamine (METH). MTT reduction and NR uptake assays revealed that both cathinones and METH induced cytotoxicity in a concentration- and time-dependent manner. Pre-treatment with trolox (antioxidant) partially prevented the cytotoxicity induced by all tested drugs, while N-acetyl-L-cysteine (NAC; antioxidant and glutathione precursor) and GBR 12909 (dopamine transporter inhibitor) partially prevented the cytotoxicity induced by cathinones, as evaluated by the MTT reduction assay. Unlike METH, cathinones induced oxidative stress evidenced by the increase on intracellular levels of reactive oxygen species (ROS), and also by the decrease of intracellular glutathione levels. Trolox prevented, partially but significantly, the ROS generation elicited by cathinones, while NAC inhibited it completely. All tested drugs induced mitochondrial dysfunction, since they led to mitochondrial membrane depolarization and to intracellular ATP depletion. Activation of caspase-3, indicative of apoptosis, was seen both for cathinones and METH, and confirmed by annexin V and propidium iodide positive staining. Autophagy was also activated by all drugs tested. Pre-incubation with bafilomycin A1, an inhibitor of the vacuolar H+-ATPase, only protected against the cytotoxicity induced by METH, which indicates dissimilar toxicological pathways for the tested drugs. In conclusion, the mitochondrial impairment and oxidative stress observed for the tested cathinones may be key factors for their neurotoxicity, but different outcome pathways seem to be involved in the adverse effects, when compared to METH.
Collapse
Affiliation(s)
- Jorge Soares
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Vera Marisa Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Helena Gaspar
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- MARE - Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Susana Santos
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - João Paulo Capela
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
- FP-ENAS (Fernando Pessoa Energy, Environment and Health Research Unit), CEBIMED (Biomedical Research Centre), Faculty of Health Sciences, University of Fernando Pessoa, Porto, Portugal.
| |
Collapse
|
7
|
Zhou X, Bouitbir J, Liechti ME, Krähenbühl S, Mancuso RV. Hyperthermia Increases Neurotoxicity Associated with Novel Methcathinones. Cells 2020; 9:cells9040965. [PMID: 32295288 PMCID: PMC7227000 DOI: 10.3390/cells9040965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/29/2020] [Accepted: 04/09/2020] [Indexed: 12/16/2022] Open
Abstract
Hyperthermia is one of the severe acute adverse effects that can be caused by the ingestion of recreational drugs, such as methcathinones. The effect of hyperthermia on neurotoxicity is currently not known. The primary aim of our study was therefore to investigate the effects of hyperthermia (40.5 °C) on the neurotoxicity of methcathinone (MC), 4-chloromethcathinone (4-CMC), and 4-methylmethcathinone (4-MMC) in SH-SY5Y cells. We found that 4-CMC and 4-MMC were cytotoxic (decrease in cellular ATP and plasma membrane damage) under both hyper- (40.5 °C) and normothermic conditions (37 °C), whereby cells were more sensitive to the toxicants at 40.5 °C. 4-CMC and 4-MMC impaired the function of the mitochondrial electron transport chain and increased mitochondrial formation of reactive oxygen species (ROS) in SH-SY5Y cells, which were accentuated under hyperthermic conditions. Hyperthermia was associated with a rapid expression of the 70 kilodalton heat shock protein (Hsp70), which partially prevented cell death after 6 h of exposure to the toxicants. After 24 h of exposure, autophagy was stimulated by the toxicants and by hyperthermia but could only partially prevent cell death. In conclusion, hyperthermic conditions increased the neurotoxic properties of methcathinones despite the stimulation of protective mechanisms. These findings may be important for the understanding of the mechanisms and clinical consequences of the neurotoxicity associated with these compounds.
Collapse
Affiliation(s)
- Xun Zhou
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, 4031 Basel, Switzerland; (X.Z.); (J.B.); (M.E.L.); (R.V.M.)
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Jamal Bouitbir
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, 4031 Basel, Switzerland; (X.Z.); (J.B.); (M.E.L.); (R.V.M.)
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Swiss Centre for Applied Human Toxicology, 4031 Basel, Switzerland
| | - Matthias E. Liechti
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, 4031 Basel, Switzerland; (X.Z.); (J.B.); (M.E.L.); (R.V.M.)
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, 4031 Basel, Switzerland; (X.Z.); (J.B.); (M.E.L.); (R.V.M.)
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Swiss Centre for Applied Human Toxicology, 4031 Basel, Switzerland
- Correspondence: ; Tel.: +41-61-265-4715
| | - Riccardo V. Mancuso
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, 4031 Basel, Switzerland; (X.Z.); (J.B.); (M.E.L.); (R.V.M.)
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
8
|
Santos‐Toscano R, Guirguis A, Davidson C. How preclinical studies have influenced novel psychoactive substance legislation in the UK and Europe. Br J Clin Pharmacol 2020; 86:452-481. [DOI: 10.1111/bcp.14224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/30/2022] Open
Affiliation(s)
- Raquel Santos‐Toscano
- School of Pharmacy & Biomedical Sciences, Faculty of Clinical & Biomedical Sciences University of Central Lancashire UK
| | - Amira Guirguis
- Swansea University Medical School, Institute of Life Sciences 2, Swansea University Swansea UK
| | - Colin Davidson
- School of Pharmacy & Biomedical Sciences, Faculty of Clinical & Biomedical Sciences University of Central Lancashire UK
| |
Collapse
|
9
|
Leong HS, Philp M, Simone M, Witting PK, Fu S. Synthetic Cathinones Induce Cell Death in Dopaminergic SH-SY5Y Cells via Stimulating Mitochondrial Dysfunction. Int J Mol Sci 2020; 21:ijms21041370. [PMID: 32085614 PMCID: PMC7073199 DOI: 10.3390/ijms21041370] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 01/22/2023] Open
Abstract
Increasing reports of neurological and psychiatric complications due to psychostimulant synthetic cathinones (SCs) have recently raised public concern. However, the precise mechanism of SC toxicity is unclear. This paucity of understanding highlights the need to investigate the in-vitro toxicity and mechanistic pathways of three SCs: butylone, pentylone, and 3,4-Methylenedioxypyrovalerone (MDPV). Human neuronal cells of SH-SY5Y were cultured in supplemented DMEM/F12 media and differentiated to a neuronal phenotype using retinoic acid (10 μM) and 12-O-tetradecanoylphorbol-13-acetate (81 nM). Trypan blue and lactate dehydrogenase assays were utilized to assess the neurotoxicity potential and potency of these three SCs. To investigate the underlying neurotoxicity mechanisms, measurements included markers of oxidative stress, mitochondrial bioenergetics, and intracellular calcium (Ca2+), and cell death pathways were evaluated at two doses (EC15 and EC40), for each drug tested. Following 24 h of treatment, all three SCs exhibited a dose-dependent neurotoxicity, characterized by a significant (p < 0.0001 vs. control) production of reactive oxygen species, decreased mitochondrial bioenergetics, and increased intracellular Ca2+ concentrations. The activation of caspases 3 and 7 implicated the orchestration of mitochondrial-mediated neurotoxicity mechanisms for these SCs. Identifying novel therapeutic agents to enhance an altered mitochondrial function may help in the treatment of acute-neurological complications arising from the illicit use of these SCs.
Collapse
Affiliation(s)
- Huey Sze Leong
- Centre for Forensic Science, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (H.S.L.); (M.P.)
- Discipline of Pathology, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia;
| | - Morgan Philp
- Centre for Forensic Science, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (H.S.L.); (M.P.)
| | - Martin Simone
- Discipline of Pathology, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia;
| | - Paul Kenneth Witting
- Discipline of Pathology, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia;
- Correspondence: (P.K.W.); (S.F.); Tel.: +61-2-9114-0524 (P.K.W.); +61-2-9514-8207 (S.F.)
| | - Shanlin Fu
- Centre for Forensic Science, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (H.S.L.); (M.P.)
- Correspondence: (P.K.W.); (S.F.); Tel.: +61-2-9114-0524 (P.K.W.); +61-2-9514-8207 (S.F.)
| |
Collapse
|
10
|
Podophyllotoxin Isolated from Podophyllum peltatum Induces G2/M Phase Arrest and Mitochondrial-Mediated Apoptosis in Esophageal Squamous Cell Carcinoma Cells. FORESTS 2019. [DOI: 10.3390/f11010008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers in East Asia and is the seventh leading cause of cancer deaths. Podophyllotoxin (PT), a cyclolignan isolated from podophyllum peltatum, exhibits anti-cancer effects at the cellular level. This study investigated the underlying mechanism of anti-cancer effects induced by PT in ESCC cells. Exposure to increasing concentrations of PT led to a significant decrease in the growth and anchorage-independent colony numbers of ESCC cells. PT showed high anticancer efficacy against a panel of four types of ESCC cells, including KYSE 30, KYSE 70, KYSE 410, KYSE 450, and KYSE 510 by IC50 at values ranges from 0.17 to 0.3 μM. We also found that PT treatment induced G2/M phase arrest in the cell cycle and accumulation of the sub-G1 population, as well as apoptosis. Exposure to PT triggered a significant synthesis of reactive oxygen species (ROS), a loss of mitochondrial membrane potential (MMP), and activation of various caspases. Furthermore, PT increased the levels of phosphorylated c-Jun N-terminal kinase (JNK), p38, and the expression of Endoplasmic reticulum (ER) stress marker proteins via ROS generation. An increase in the level of pro-apoptotic proteins and a reduction in the anti-apoptotic protein level induced ESCC cell death via the loss of MMP. Additionally, the release of cytochrome c into the cytosol with Apaf-1 induced the activation of multi-caspases. In conclusion, our results revealed that PT resulted in apoptosis of ESCC cells by modulating ROS-mediated mitochondrial and ER stress-dependent mechanisms. Therefore, PT is a promising therapeutic candidate as an anti-cancer drug against ESCC for clinical use.
Collapse
|
11
|
Soares J, Costa VM, Gaspar H, Santos S, de Lourdes Bastos M, Carvalho F, Capela JP. Structure-cytotoxicity relationship profile of 13 synthetic cathinones in differentiated human SH-SY5Y neuronal cells. Neurotoxicology 2019; 75:158-173. [DOI: 10.1016/j.neuro.2019.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 07/30/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
|
12
|
Gonçalves JL, Alves VL, Aguiar J, Teixeira HM, Câmara JS. Synthetic cathinones: an evolving class of new psychoactive substances. Crit Rev Toxicol 2019; 49:549-566. [PMID: 31747318 DOI: 10.1080/10408444.2019.1679087] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Synthetic cathinones (SCat) are amphetamine-like psychostimulants that emerged onto drug markets as "legal" alternatives to illicit drugs such as ecstasy, cocaine, and amphetamines. Usually they are sold as "bath salts," "plant food," or "research chemicals," and rapidly gained popularity amongst drugs users due to their potency, low cost, and availability. In addition, internet drug sales have been replacing the old way of supplying drugs of abuse, contributing to their rapid spread. Despite the legislative efforts to control SCat, new derivatives continue to emerge on the recreational drugs market and their abuse still represents a serious public health issue. To date, about 150 SCat have been identified on the clandestine drugs market, which are one of the largest groups of new psychoactive substances (NPS) monitored by the United Nations Office on Drugs and Crime and the European Monitoring Center for Drugs and Drug Addiction. Similar to the classical stimulants, SCat affect the levels of catecholamines in the central nervous system, which results in their psychological, behavioral and toxic effects. Generally, the effects of SCat greatly differ from drug to drug and relatively little information is available about their pharmacology. The present work provides a review on the development of SCat as substances of abuse, current patterns of abuse and their legal status, chemical classification, known mechanisms of action, and their toxicological effects.
Collapse
Affiliation(s)
- João L Gonçalves
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Vera L Alves
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Joselin Aguiar
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Helena M Teixeira
- Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal.,Instituto Nacional de Medicina Legal e Ciências Forenses, IP, Delegação Centro, Coimbra, Portugal
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal.,Faculdade de Ciências Exactas e da Engenharia, Universidade da Madeira, Funchal, Portugal
| |
Collapse
|
13
|
Souders CL, Davis RH, Qing H, Liang X, Febo M, Martyniuk CJ. The psychoactive cathinone derivative pyrovalerone alters locomotor activity and decreases dopamine receptor expression in zebrafish (Danio rerio). Brain Behav 2019; 9:e01420. [PMID: 31625691 PMCID: PMC6851804 DOI: 10.1002/brb3.1420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/27/2019] [Accepted: 09/06/2019] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Pyrovalerone (4-methyl-β-keto-prolintane) is a synthetic cathinone (beta-keto-amphetamine) derivative. Cathinones are a concern as drugs of abuse, as related street drugs such as methylenedioxypyrovalerone have garnered significant attention. The primary mechanism of action of cathinones is to inhibit reuptake transporters (dopamine and norepinephrine) in reward centers of the central nervous system. METHODS We measured bioenergetic, behavioral, and molecular responses to pyrovalerone (nM-µM) in zebrafish to evaluate its potential for neurotoxicity and neurological impairment. RESULTS Pyrovalerone did not induce any mortality in zebrafish larvae over a 3- and 24-hr period; however, seizures were prevalent at the highest dose tested (100 µM). Oxidative phosphorylation was not affected in the embryos, and there was no change in superoxide dismutase 1 expression. Following a 3-hr treatment to pyrovalerone (1-100 µM), larval zebrafish (6d) showed a dose-dependent decrease (70%-90%) in total distance moved in a visual motor response (VMR) test. We interrogated potential mechanisms related to the hypoactivity, focusing on the expression of dopamine-related transcripts as cathinones can modulate the dopamine system. Pyrovalerone decreased the expression levels of dopamine receptor D1 (~60%) in larval zebrafish but did not affect the expression of tyrosine hydroxylase, dopamine active transporter, or any other dopamine receptor subunit examined, suggesting that pyrovalerone may regulate the expression of dopamine receptors in a specific manner. DISCUSSION Further studies using zebrafish are expected to reveal new insight into molecular mechanisms and behavioral responses to cathinone derivates, and zebrafish may be a useful model for understanding the relationship between the dopamine system and bath salts.
Collapse
Affiliation(s)
- Christopher Laurence Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Robert H Davis
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Hua Qing
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Marcelo Febo
- Department of Psychiatry, Evelyn F. and William L. McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
14
|
The new psychoactive substance 3-methylmethcathinone (3-MMC or metaphedrone) induces oxidative stress, apoptosis, and autophagy in primary rat hepatocytes at human-relevant concentrations. Arch Toxicol 2019; 93:2617-2634. [PMID: 31468101 DOI: 10.1007/s00204-019-02539-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
Abstract
3-Methylmethcathinone (3-MMC or metaphedrone) has become one of the most popular recreational drugs worldwide after the ban of mephedrone, and was recently deemed responsible for several intoxications and deaths. This study aimed at assessing the hepatotoxicity of 3-MMC. For this purpose, Wistar rat hepatocytes were isolated by collagenase perfusion, cultured and exposed for 24 h at a concentration range varying from 31 nM to 10 mM 3-MMC. The modulatory effects of cytochrome P450 (CYP) inhibitors on 3-MMC hepatotoxicity were evaluated. 3-MMC-induced toxicity was perceived at the lysosome at lower concentrations (NOEC 312.5 µM), compared to mitochondria (NOEC 379.5 µM) and cytoplasmic membrane (NOEC 1.04 mM). Inhibition of CYP2D6 and CYP2E1 diminished 3-MMC cytotoxicity, yet for CYP2E1 inhibition this effect was only observed for concentrations up to 1.3 mM. A significant concentration-dependent increase of intracellular reactive species was observed from 10 μM 3-MMC on; a concentration-dependent decrease in antioxidant glutathione defences was also observed. At 10 μM, caspase-3, caspase-8, and caspase-9 activities were significantly elevated, corroborating the activation of both intrinsic and extrinsic apoptosis pathways. Nuclear morphology and formation of cytoplasmic acidic vacuoles suggest prevalence of necrosis and autophagy at concentrations higher than 10 μM. No significant alterations were observed in the mitochondrial membrane potential, but intracellular ATP significantly decreased at 100 μM. Our data point to a role of metabolism in the hepatotoxicity of 3-MMC, which seems to be triggered both by autophagic and apoptotic/necrotic mechanisms. This work is the first approach to better understand 3-MMC toxicology.
Collapse
|
15
|
Leyrer-Jackson JM, Nagy EK, Olive MF. Cognitive deficits and neurotoxicity induced by synthetic cathinones: is there a role for neuroinflammation? Psychopharmacology (Berl) 2019; 236:1079-1095. [PMID: 30368582 PMCID: PMC6486871 DOI: 10.1007/s00213-018-5067-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023]
Abstract
RATIONALE The number of synthetic derivatives of cathinone, the primary psychoactive alkaloid found in Catha edulis (khat), has risen exponentially in the past decade. Synthetic cathinones (frequently referred to as "bath salts") produce adverse cognitive and behavioral sequelae, share similar pharmacological mechanisms of action with traditional psychostimulants, and may therefore trigger similar cellular events that give rise to neuroinflammation and neurotoxicity. OBJECTIVES In this review, we provide a brief overview of synthetic cathinones, followed by a summary of cognitive deficits in animals and humans that have been documented following acute or repeated exposure. We also summarize growing evidence from in vitro and in vivo studies for synthetic cathinone-induced neurotoxicity, and provide a working hypothetic model of potential cellular mechanisms. RESULTS Synthetic cathinones produce varying effects on markers of monoaminergic terminal function and can increase the formation of reactive oxygen and nitrogen species, induce apoptotic signaling, and cause neurodegeneration and cytotoxicity. We hypothesize that these effects result from biochemical events similar to those induced by traditional psychostimulants. However, empirical evidence for the ability of synthetic cathinones to induce neuroinflammatory processes is currently lacking. CONCLUSIONS Like their traditional psychostimulant counterparts, synthetic cathinones appear to induce neurocognitive dysfunction and cytotoxicity, which are dependent on drug type, dose, frequency, and time following exposure. However, additional studies on synthetic cathinone-induced neuroinflammation are clearly needed, as are investigations into the neurochemical and neuroimmune mechanisms underlying their neurotoxic effects. Such endeavors may lead to novel therapeutic avenues to promote recovery in habitual synthetic cathinone users.
Collapse
Affiliation(s)
| | | | - M. Foster Olive
- Correspondence to: M. Foster Olive, Ph.D. Department of Psychology, Arizona State University, 950 S. McAllister Ave. Tempe, AZ 85287 USA, Phone 1-480-727-9557, Fax 1-480-965-8544,
| |
Collapse
|
16
|
Bath salts and polyconsumption: in search of drug-drug interactions. Psychopharmacology (Berl) 2019; 236:1001-1014. [PMID: 30911791 DOI: 10.1007/s00213-019-05213-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 03/01/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND RATIONALE Polydrug use is a widespread phenomenon, especially among adolescents and young adults. Synthetic cathinones are frequently consumed in combination with other drugs of abuse. However, there is very little information regarding the consequences of this specific consumption pattern. OBJECTIVES The aim of this review is to introduce this topic and highlight the gaps in the existing literature. In three different sections, we focus on specific interactions of synthetic cathinones with alcohol, cannabinoids, and the stimulants nicotine and cocaine. We then dedicate a section to the existence of sex and gender differences in the effects of synthetic cathinones and the long-term psychophysiological consequences of adolescent and prenatal exposure to these drugs. MAJOR FINDINGS Epidemiological studies, case reports, and results obtained in animal models point to the existence of pharmacological and pharmacokinetic interactions between synthetic cathinones and other drugs of abuse. This pattern of polyconsumption can cause the potentiation of negative effects, and the dissociation between objective and subjective effects can increase the combined use of the drugs and the risk of toxicity leading to serious health problems. Certain animal studies indicate a higher vulnerability and effect of cathinones in females. In humans, most of the users are men and case reports show long-term psychotic symptoms after repeated use. CONCLUSIONS The co-use of synthetic cathinones and the other drugs of abuse analyzed indicates potentiation of diverse effects including dependence and addiction, neurotoxicity, and impaired cognition and emotional responses. The motivations for and effects of synthetic cathinone use appear to be influenced by sex/gender. The long-term consequences of their use by adolescents and pregnant women deserve further investigation.
Collapse
|
17
|
Methcathinone and 3-Fluoromethcathinone Stimulate Spontaneous Horizontal Locomotor Activity in Mice and Elevate Extracellular Dopamine and Serotonin Levels in the Mouse Striatum. Neurotox Res 2018; 35:594-605. [PMID: 30377956 PMCID: PMC6420425 DOI: 10.1007/s12640-018-9973-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/07/2018] [Accepted: 10/19/2018] [Indexed: 12/23/2022]
Abstract
Methcathinone (MC) and 3-fluoromethcathinone (3-FMC) are well-known members of the synthetic cathinone derivatives, the second most abused group of novel psychoactive substances (NPS). They are considered as methamphetamine-like cathinones, as they elicit their psychostimulatory effects via inhibition of monoamine uptake and enhanced release. The present study examines the effects of MC and 3-FMC on the spontaneous locomotor activity of mice and extracellular levels of dopamine and serotonin in the mouse striatum. Both MC and 3-FMC produced a dose-dependent increase of horizontal locomotor activity, but no significant changes in rearing behavior were observed. The locomotor stimulation induced by MC and 3-FMC is mediated by activation of dopaminergic neurotransmission, as selective D1-dopamine receptor antagonist, SCH 23390, abolished the effects of both drugs. In line with pharmacological data obtained by previous in vitro studies, MC and 3-FMC produced potent increases of extracellular dopamine and serotonin levels in the mouse striatum. Taken together, results presented within this study confirm previous findings and expand our knowledge on the pharmacology of MC and 3-FMC along with their behavioral effects.
Collapse
|