1
|
Ishaq S, Shah IA, Lee SD, Wu BT. Effects of exercise training on nigrostriatal neuroprotection in Parkinson's disease: a systematic review. Front Neurosci 2025; 18:1464168. [PMID: 39844853 PMCID: PMC11752748 DOI: 10.3389/fnins.2024.1464168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Parkinson's disease (PD) is characterized by progressive neurodegeneration within the nigrostriatum, leading to motor dysfunction. This systematic review aimed to summarize the effects of various exercise training regimens on protein or gene expression within the nigrostriatum and their role in neuroprotection and motor function improvement in animal models of Parkinson's disease (PD). Methods PubMed, EMBASE, and Web of Science were searched up to June 2024 and included sixteen studies that adhere to PRISMA guidelines and CAMARADES checklist scores ranging from 4 to 6 out of 10. Various exercise training regimens, administered 5 days per week for 6.5 weeks, were applied to MPTP, 6-OHDA, and PFF-α-synuclein-induced PD animal models. Results Exercise training was found to downregulate the inflammatory pathway by attenuating α-synuclein aggregation, inhibiting the TLR/MyD88/IκBα signaling cascade and NF-κB phosphorylation, and decreasing pro-inflammatory cytokines IL-1β and TNF-α while increasing anti-inflammatory cytokines IL-10 and TGF-β within the nigrostriatum. It also inhibited the ASC and NLRP3 inflammasome complex and reduced the BAX/ Bcl-2 ratio and caspase-1/3 proteins, thereby decreasing neuronal apoptosis in the nigrostriatum. Exercise training elevated the expression of Pro-BDNF, BDNF, GDNF, TrkB, and Erk1/2, providing neurotrophic support to dopaminergic neurons. Furthermore, it upregulated the dopaminergic signaling pathway by increasing the expression of TH, DAT, PSD-95, and synaptophysin in the nigrostriatum. Discussion The findings suggested that exercise training downregulated inflammatory and apoptotic pathways while upregulated BDNF/GDNF pathways and dopaminergic signaling within the nigrostriatum. These molecular changes contributed to neuroprotection, reduced dopaminergic neuron loss, and improved motor function in PD animal models. Systematic review registration CRD42024484537 https://www.crd.york.ac.uk/prospero/#recordDetails.
Collapse
Affiliation(s)
- Shahid Ishaq
- PhD Program in Healthcare Science, College of Healthcare Science, China Medical University, Taichung, Taiwan
| | - Iqbal Ali Shah
- PhD Program in Healthcare Science, College of Healthcare Science, China Medical University, Taichung, Taiwan
| | - Shin-Da Lee
- PhD Program in Healthcare Science, College of Healthcare Science, China Medical University, Taichung, Taiwan
- Department of Physical Therapy, China Medical University, Taichung, Taiwan
| | - Bor-Tsang Wu
- Department of Physical Therapy, China Medical University, Taichung, Taiwan
| |
Collapse
|
2
|
Machado CA, Oliveira BDS, de Barros JLVM, Fernandes HDB, de Brito Toscano EC, Kangussu LM, Guimarães PPG, Simões E Silva AC, Teixeira AL, de Miranda AS. Involvement of Renin-Angiotensin system (RAS) components in mild traumatic brain injury. Brain Res 2024; 1846:149266. [PMID: 39374839 DOI: 10.1016/j.brainres.2024.149266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/11/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
The Renin Angiotensin System (RAS) plays a pathophysiological role in traumatic brain injury (TBI) but the evidence of its involvement in mild TBI (mTBI) is still limited. We aimed at investigating the levels of components from both the classical and counter-regulatory axis of the RAS in a mTBI animal model. Mice with mTBI displayed enhanced ACE/Ang II/AT1R axis ipsilateral- and contralaterally to the trauma in the hippocampus and prefrontal cortex during acute (24 and 72 h) and later (30 days) timepoints. Increase in Ang-(1-7) levels alongside reduction in Mas receptor expression in hippocampus and prefrontal cortex was also observed after injury. Conversely, mTBI-mice presented higher expression of AT2 receptor in the contralateral hippocampus and the ipsilateral prefrontal cortex. Importantly, treatment with telmisartan, an AT1R blocker, and perindopril, an ACE inhibitor, were able to prevent mTBI-associated locomotor activity impairment and anxiety-like behavior, corroborating the involvement of RAS in the pathophysiology of mTBI. We provided original evidence that components of classical and alternative RAS axes undergo alterations in key brain areas following a mTBI in a time and hemisphere dependent manner. Our findings also open new avenues for investigating the therapeutic potential of RAS components in mTBI.
Collapse
Affiliation(s)
- Caroline Amaral Machado
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Bruna da Silva Oliveira
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Heliana de Barros Fernandes
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Lucas Miranda Kangussu
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antonio Lucio Teixeira
- The Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Aline Silva de Miranda
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
O'Brien JT, Chouliaras L, Sultana J, Taylor JP, Ballard C. RENEWAL: REpurposing study to find NEW compounds with Activity for Lewy body dementia-an international Delphi consensus. Alzheimers Res Ther 2022; 14:169. [PMID: 36369100 PMCID: PMC9650797 DOI: 10.1186/s13195-022-01103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
Drug repositioning and repurposing has proved useful in identifying new treatments for many diseases, which can then rapidly be brought into clinical practice. Currently, there are few effective pharmacological treatments for Lewy body dementia (which includes both dementia with Lewy bodies and Parkinson's disease dementia) apart from cholinesterase inhibitors. We reviewed several promising compounds that might potentially be disease-modifying agents for Lewy body dementia and then undertook an International Delphi consensus study to prioritise compounds. We identified ambroxol as the top ranked agent for repurposing and identified a further six agents from the classes of tyrosine kinase inhibitors, GLP-1 receptor agonists, and angiotensin receptor blockers that were rated by the majority of our expert panel as justifying a clinical trial. It would now be timely to take forward all these compounds to Phase II or III clinical trials in Lewy body dementia.
Collapse
Affiliation(s)
- John T O'Brien
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK.
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK.
| | - Leonidas Chouliaras
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Janet Sultana
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle, UK
| | - Clive Ballard
- College of Medicine and Health, University of Exeter, Exeter, UK
| |
Collapse
|
4
|
The Role of a Gut Microbial-Derived Metabolite, Trimethylamine N-Oxide (TMAO), in Neurological Disorders. Mol Neurobiol 2022; 59:6684-6700. [DOI: 10.1007/s12035-022-02990-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
|
5
|
Telmisartan neuroprotective effects in 3-nitropropionic acid Huntington's disease model in rats: Cross talk between PPAR-γ and PI3K/Akt/GSK-3β pathway. Life Sci 2022; 297:120480. [DOI: 10.1016/j.lfs.2022.120480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 11/18/2022]
|
6
|
Jo Y, Kim S, Ye BS, Lee E, Yu YM. Protective Effect of Renin-Angiotensin System Inhibitors on Parkinson's Disease: A Nationwide Cohort Study. Front Pharmacol 2022; 13:837890. [PMID: 35308220 PMCID: PMC8927987 DOI: 10.3389/fphar.2022.837890] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Renin-angiotensin system (RAS) inhibitors have been suggested as protective agents in Parkinson's disease (PD). However, epidemiological evidence on the association between RAS inhibitors and the development of PD is inconsistent. Objectives: To investigate the effect of RAS inhibitors on PD risk in patients with ischemic heart disease (IHD) by type and cumulative duration of RAS inhibitors and their degree of blood-brain barrier (BBB) penetration ability. Methods: This was a propensity score-matched retrospective cohort study using 2008-2019 healthcare claims data from the Korean Health Insurance Review and Assessment database. The association between RAS inhibitor use and PD in patients with IHD was evaluated using multivariate Cox proportional hazard regression analysis. The risks are presented as adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs). Results: Over a 10-year follow-up, 1,086 of 62,228 IHD patients developed PD. The Cox regression model showed that the use of RAS inhibitors was significantly associated with a lower risk of PD (aHR = 0.75; 95% CI 0.66-0.85) than the non-use of RAS inhibitors. Specifically, this reduced risk of PD only remained with the use of BBB-crossing angiotensin II receptor blockers (ARBs) (aHR = 0.62; 95% CI = 0.53-0.74), and this association was more definite with an increasing cumulative duration. A significantly reduced risk of PD was not observed with the use of BBB-crossing angiotensin-converting enzyme inhibitors. Conclusions: The use of ARBs with BBB-penetrating properties and a high cumulative duration significantly reduces the risk of PD in IHD patients. This protective effect could provide insight into disease-modifying drug candidates for PD.
Collapse
Affiliation(s)
- Youngkwon Jo
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, South Korea
| | - Seungyeon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea.,Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, South Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Euni Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Yun Mi Yu
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, South Korea.,Department of Pharmaceutical Medicine and Regulatory Sciences, Colleges of Medicine and Pharmacy, Yonsei University, Incheon, South Korea
| |
Collapse
|
7
|
Hanael E, Chai O, Konstanitin L, Gibeon L, Rapaport K, Ruggeri M, Friedman A, Shamir MH. Telmisartan as an add-on treatment for dogs with refractory idiopathic epilepsy: a nonrandomized, uncontrolled, open-label clinical trial. J Am Vet Med Assoc 2022; 260:735-740. [PMID: 35201995 DOI: 10.2460/javma.20.12.0683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To evaluate the effect on seizure frequency of add-on telmisartan treatment in dogs with refractory idiopathic epilepsy. ANIMALS 11 client-owned dogs with idiopathic epilepsy and ≥ 2 generalized seizures/mon that were currently being treated with ≥ 2 antiepileptic drugs. PROCEDURES Telmisartan was administered at a dosage of 0.25 to 1 mg/kg, PO, every 12 hours for 4 to 16 months. Seizure frequencies before and during telmisartan treatment were recorded. RESULTS 10 dogs completed the 4-month treatment protocol. One dog was excluded owing to a transient increase in serum creatinine concentration; no adverse effects of telmisartan were observed in the remaining 10 dogs. A reduction in seizure frequency greater than an estimated expected placebo effect of 30% was evident in 7 of the 10 dogs. Long-term (12 to 16 months) follow-up information was available for 6 dogs, of which 4 had a further reduction in seizure frequency. Differences in seizure frequency were not statistically significant. No significant difference was found in serum phenobarbital concentration throughout the treatment period in the 7 dogs that were tested. CLINICAL RELEVANCE Telmisartan has the potential to reduce seizure frequency when administered as an add-on antiepileptic drug in dogs with refractory idiopathic epilepsy. A randomized, double-blind, placebo-controlled trial is needed to determine the true efficacy of telmisartan. On the basis of our results, a sample size of 54 dogs with refractory idiopathic epilepsy would be needed.
Collapse
Affiliation(s)
- Erez Hanael
- Veterinary Teaching Hospital, Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Orit Chai
- Veterinary Teaching Hospital, Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Lilach Konstanitin
- Veterinary Teaching Hospital, Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Kira Rapaport
- Veterinary Teaching Hospital, Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Marco Ruggeri
- Veterinary Teaching Hospital, Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Alon Friedman
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Merav H Shamir
- Veterinary Teaching Hospital, Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
8
|
Recent Advances in the Endogenous Brain Renin-Angiotensin System and Drugs Acting on It. J Renin Angiotensin Aldosterone Syst 2021; 2021:9293553. [PMID: 34925551 PMCID: PMC8651430 DOI: 10.1155/2021/9293553] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/14/2021] [Accepted: 10/23/2021] [Indexed: 12/22/2022] Open
Abstract
The RAS (renin-angiotensin system) is the part of the endocrine system that plays a prime role in the control of essential hypertension. Since the discovery of brain RAS in the seventies, continuous efforts have been put by the scientific committee to explore it more. The brain has shown the presence of various components of brain RAS such as angiotensinogen (AGT), converting enzymes, angiotensin (Ang), and specific receptors (ATR). AGT acts as the precursor molecule for Ang peptides—I, II, III, and IV—while the enzymes such as prorenin, ACE, and aminopeptidases A and N synthesize it. AT1, AT2, AT4, and mitochondrial assembly receptor (MasR) are found to be plentiful in the brain. The brain RAS system exhibits pleiotropic properties such as neuroprotection and cognition along with regulation of blood pressure, CVS homeostasis, thirst and salt appetite, stress, depression, alcohol addiction, and pain modulation. The molecules acting through RAS predominantly ARBs and ACEI are found to be effective in various ongoing and completed clinical trials related to cognition, memory, Alzheimer's disease (AD), and pain. The review summarizes the recent advances in the brain RAS system highlighting its significance in pathophysiology and treatment of the central nervous system-related disorders.
Collapse
|
9
|
Sunanda T, Ray B, Mahalakshmi AM, Bhat A, Rashan L, Rungratanawanich W, Song BJ, Essa MM, Sakharkar MK, Chidambaram SB. Mitochondria-Endoplasmic Reticulum Crosstalk in Parkinson's Disease: The Role of Brain Renin Angiotensin System Components. Biomolecules 2021; 11:1669. [PMID: 34827667 PMCID: PMC8615717 DOI: 10.3390/biom11111669] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
The past few decades have seen an increased emphasis on the involvement of the mitochondrial-associated membrane (MAM) in various neurodegenerative diseases, particularly in Parkinson's disease (PD) and Alzheimer's disease (AD). In PD, alterations in mitochondria, endoplasmic reticulum (ER), and MAM functions affect the secretion and metabolism of proteins, causing an imbalance in calcium homeostasis and oxidative stress. These changes lead to alterations in the translocation of the MAM components, such as IP3R, VDAC, and MFN1 and 2, and consequently disrupt calcium homeostasis and cause misfolded proteins with impaired autophagy, distorted mitochondrial dynamics, and cell death. Various reports indicate the detrimental involvement of the brain renin-angiotensin system (RAS) in oxidative stress, neuroinflammation, and apoptosis in various neurodegenerative diseases. In this review, we attempted to update the reports (using various search engines, such as PubMed, SCOPUS, Elsevier, and Springer Nature) demonstrating the pathogenic interactions between the various proteins present in mitochondria, ER, and MAM with respect to Parkinson's disease. We also made an attempt to speculate the possible involvement of RAS and its components, i.e., AT1 and AT2 receptors, angiotensinogen, in this crosstalk and PD pathology. The review also collates and provides updated information on the role of MAM in calcium signaling, oxidative stress, neuroinflammation, and apoptosis in PD.
Collapse
Affiliation(s)
- Tuladhar Sunanda
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (T.S.); (B.R.); (A.M.M.); (A.B.)
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (T.S.); (B.R.); (A.M.M.); (A.B.)
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (T.S.); (B.R.); (A.M.M.); (A.B.)
| | - Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (T.S.); (B.R.); (A.M.M.); (A.B.)
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Luay Rashan
- Biodiversity Research Centre, Dohfar University, Salalah 2059, Oman;
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA; (W.R.); (B.-J.S.)
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA; (W.R.); (B.-J.S.)
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat 123, Oman;
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat 123, Oman
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (T.S.); (B.R.); (A.M.M.); (A.B.)
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| |
Collapse
|
10
|
Mohseni M, Sahebkar A, Askari G, Johnston TP, Alikiaii B, Bagherniya M. The clinical use of curcumin on neurological disorders: An updated systematic review of clinical trials. Phytother Res 2021; 35:6862-6882. [PMID: 34528307 DOI: 10.1002/ptr.7273] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/05/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022]
Abstract
Neuroprotective effects of curcumin have been shown in previous studies. This updated systematic review of clinical trials aimed to investigate the effect of curcumin on neurological disorders. Databases including PubMed, Scopus, Web of Science, and Google Scholar were systematically searched to identify clinical trials investigating the effects of curcumin/turmeric supplements alone, or in combination with other ingredients, on neurological diseases. Nineteen studies comprising 1,130 patients met the inclusion criteria. Generally, intervention and study outcomes were heterogeneous. In most of the studies, curcumin had a favorable effect on oxidative stress and inflammation. However, with the exception of AD, curcumin supplementation either alone, or in combination with other ingredients, had beneficial effects on clinical outcomes for the other aforementioned neurodegenerative diseases. For example, the frequency, severity, and duration of migraine attacks, scores on the revised ALS functional rating scale, and the occurrence of motor complications in PD were all significantly improved with curcumin supplementation either alone or in combination with other ingredients. However, in three studies, several adverse side effects (mostly gastrointestinal in nature) were reported. Curcumin supplementation may have favorable effects on inflammatory status and clinical outcomes of patients with neurological disease, although the results were not consistent.
Collapse
Affiliation(s)
- Maryam Mohseni
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Askari
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Babak Alikiaii
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
11
|
Hong Y, Wu W, Wang S, Hao Q, Zheng H, Li S, Zhang X, Sun R. Angiotensin II type 1 receptor blockade attenuates posttraumatic stress disorder-related chronic pain by inhibiting glial activation in the spinal cord. Neuropharmacology 2021; 196:108704. [PMID: 34252405 DOI: 10.1016/j.neuropharm.2021.108704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/01/2021] [Accepted: 07/05/2021] [Indexed: 12/28/2022]
Abstract
Clinically, posttraumatic stress disorder (PTSD) and chronic pain are highly comorbid conditions, but the underlying mechanisms of and therapeutic strategies against PTSD-related pain remain unclear. Our previous studies suggested that dysregulation of neuroinflammation contributes to the development of stress-induced hyperalgesia. Recent studies reported that angiotensin II was a 'stress-related hormone', and could induce glial activation by stimulating the type 1 receptor (AT1R). In the present study, we aimed to investigate whether AT1R blockade could attenuate mechanical allodynia induced by PTSD-like stress. Adult male rats were exposed to single prolonged stress (SPS) to establish a model of PTSD-pain comorbidity. Our results showed that SPS exposure increased the levels of angiotensin II in the hippocampus, prefrontal cortex (PFC) and spinal cord; intraperitoneal injection of losartan attenuated SPS-induced mechanical allodynia, and suppressed SPS-induced glial activation (both microglia and astrocytes) and proinflammatory cytokine expression in the PFC and spinal cord, but not in the hippocampus. We further showed that intrathecal injection of losartan also exerted anti-hyperalgesic effect and suppressed SPS-induced glial activation and proinflammatory cytokine expression in the spinal cord. These results indicated that AT1R blockade by losartan attenuated mechanical allodynia induced by PTSD-like stress, and this may be attributed to the suppression of glial activation and proinflammatory cytokine expression in the spinal cord. Although further research is warranted to verify our findings in female rodents and to assess pharmacological effects of AT1R blockade in PFC and hippocampus, our study suggested the therapeutic potential of targeting AT1R in the treatment of PTSD-related chronic pain.
Collapse
Affiliation(s)
- Yishun Hong
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenyao Wu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuo Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quanshui Hao
- Department of Anesthesiology, Huanggang Central Hospital, Huanggang, China
| | - Hua Zheng
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianwei Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Rao Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
12
|
Ou Z, Zhou Y, Wang L, Xue L, Zheng J, Chen L, Tong Q. NLRP3 Inflammasome Inhibition Prevents α-Synuclein Pathology by Relieving Autophagy Dysfunction in Chronic MPTP-Treated NLRP3 Knockout Mice. Mol Neurobiol 2021; 58:1303-1311. [PMID: 33169332 DOI: 10.1007/s12035-020-02198-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022]
Abstract
Recent researches showed that nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome inhibition exerted dopaminergic neuroprotection in cellular or animal models of Parkinson's disease (PD). NLRP3 inflammasome has been proposed as a drug target for treatment of PD. However, the interplay between chronic NLRP3 inflammasome and progressive α-synuclein pathology keeps poorly understood. Moreover, the potential mechanism keeps unknown. In the present study, we investigate whether NLRP3 inflammasome inhibition prevents α-synuclein pathology by relieving autophagy dysfunction in the chronic 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) mouse model of PD. NLRP3 knockout mice and their wild-type counterparts were treated with continuous MPTP administration via osmotic mini-pumps. Dopaminergic neuronal degeneration was assessed by western blotting and immunohistochemistry (IHC). The levels of dopamine and its metabolites were determined using high-performance liquid chromatography. NLRP3 inflammasome activation and autophagy biomarkers were assessed by western blot. The expressions of pro-inflammatory cytokines were measured by ELISA. The glial reaction and α-synuclein pathology were assessed by IHC and immunofluorescence. Our results show that NLRP3 inflammasome inhibition via NLRP3 knockout not only protects against nigral dopaminergic degeneration and striatal dopamine deletion but also prevents nigral pathological α-synuclein formation in PD mice. Furthermore, it significantly suppresses MPTP-induced glial reaction accompanied by the secretion of pro-inflammatory cytokines in the midbrain of mice. Most importantly, it relieves autophagy dysfunction in the midbrain of PD mice. Collectively, we demonstrate for the first time that improving autophagy function is involved in the preventive effect of NLRP3 inflammasome inhibition on α-synuclein pathology in PD.
Collapse
Affiliation(s)
- Zhou Ou
- Department of Neurology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 1 Huanghe Road West, Huaian, 223300, Jiangsu, China
| | - Yuanzhang Zhou
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Lijun Wang
- Department of Neurology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 1 Huanghe Road West, Huaian, 223300, Jiangsu, China
| | - Liujun Xue
- Department of Neurology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 1 Huanghe Road West, Huaian, 223300, Jiangsu, China
| | - Jinlong Zheng
- Department of Neurology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 1 Huanghe Road West, Huaian, 223300, Jiangsu, China
| | - Liam Chen
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD, 21205, USA
| | - Qiang Tong
- Department of Neurology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 1 Huanghe Road West, Huaian, 223300, Jiangsu, China.
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD, 21205, USA.
| |
Collapse
|
13
|
El-Sherbeeny NA, Soliman N, Youssef AM, Abd El-Fadeal NM, El-Abaseri TB, Hashish AA, Abdelbasset WK, El-Saber Batiha G, Zaitone SA. The protective effect of biochanin A against rotenone-induced neurotoxicity in mice involves enhancing of PI3K/Akt/mTOR signaling and beclin-1 production. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111344. [PMID: 32977283 DOI: 10.1016/j.ecoenv.2020.111344] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Rotenone is an insecticide that generates oxidative stress in the CNS and induces locomotor dysfunction and neurodegeneration in rodents. Biochanin A [BioA] is an isoflavone with antioxidant and anti-inflammatory actions. The antioxidant and the modulatory action of BioA on PI3K/Akt/mTOR signaling and autophagy were tested in rotenone-Parkinsonian mice. Mice were allocated into; Group I: oil control group, Group II: rotenone group [1-mg/kg/48h, subcutaneously], group III: rotenone and BioA [10-mg/kg]. Rotenone injection resulted in locomotor disturbances in mice, degeneration in dopaminergic neurons [tyrosine hydroxylase-immunoreactive cells], low striatal dopamine, increased malondialdehyde and decreased level of glutathione. Neuroinflammation was evidenced by upregulation of astrocytes [glia fibrillary acidic protein, GFAP] and elevated levels of cytokines. The phosphorylation of PI3K/Akt/mTOR and the autophagy-related protein, beclin-1, were decreased significantly as indicated by Western blot analysis. BioA treatment enhanced locomotor activity and afforded nigral neuroprotection. The mechanism by which BioA produced this effect includes increased antioxidant defenses, lessened proinflammatory cytokines, increased phosphorylation of PI3K/Akt/mTOR proteins and upregulated beclin-1. Importantly, BioA suppressed the striatal astrocyte marker [GFAP]. Overall, the currents study highlighted that BioA activates PI3K/Akt/mTOR signaling and enhances beclin-1 leading to neuroprotection for nigral dopaminergic neurons.
Collapse
Affiliation(s)
- Nagla A El-Sherbeeny
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Nema Soliman
- Department of Histology & Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Amal M Youssef
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Noha M Abd El-Fadeal
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Taghrid B El-Abaseri
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Abdullah A Hashish
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, 22511, Damanhour, Al-Beheira, Egypt
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
14
|
Bhat A, Ray B, Mahalakshmi AM, Tuladhar S, Nandakumar DN, Srinivasan M, Essa MM, Chidambaram SB, Guillemin GJ, Sakharkar MK. Phosphodiesterase-4 enzyme as a therapeutic target in neurological disorders. Pharmacol Res 2020; 160:105078. [PMID: 32673703 DOI: 10.1016/j.phrs.2020.105078] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 02/08/2023]
Abstract
Phosphodiesterases (PDE) are a diverse family of enzymes (11 isoforms so far identified) responsible for the degradation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) which are involved in several cellular and biochemical functions. Phosphodiesterase 4 (PDE4) is the major isoform within this group and is highly expressed in the mammalian brain. An inverse association between PDE4 and cAMP levels is the key mechanism in various pathophysiological conditions like airway inflammatory diseases-chronic obstruction pulmonary disease (COPD), asthma, psoriasis, rheumatoid arthritis, and neurological disorders etc. In 2011, roflumilast, a PDE4 inhibitor (PDE4I) was approved for the treatment of COPD. Subsequently, other PDE4 inhibitors (PDE4Is) like apremilast and crisaborole were approved by the Food and Drug Administration (FDA) for psoriasis, atopic dermatitis etc. Due to the adverse effects like unbearable nausea and vomiting, dose intolerance and diarrhoea, PDE4 inhibitors have very less clinical compliance. Efforts are being made to develop allosteric modulation with high specificity to PDE4 isoforms having better efficacy and lesser adverse effects. Interestingly, repositioning PDE4Is towards neurological disorders including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS) and sleep disorders, is gaining attention. This review is an attempt to summarize the data on the effects of PDE4 overexpression in neurological disorders and the use of PDE4Is and newer allosteric modulators as therapeutic options. We have also compiled a list of on-going clinical trials on PDE4 inhibitors in neurological disorders.
Collapse
Affiliation(s)
- Abid Bhat
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Bipul Ray
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | | | - Sunanda Tuladhar
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - D N Nandakumar
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Malathi Srinivasan
- Department of Lipid Science, CSIR - Central Food Technological Research Institute (CFTRI), CFTRI Campus, Mysuru, 570020, India
| | - Musthafa Mohamed Essa
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman; Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman.
| | - Saravana Babu Chidambaram
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India; Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India.
| | - Gilles J Guillemin
- Neuroinflammation group, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia.
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, 107, Wiggins Road, Saskatoon, SK, S7N 5C9, Canada
| |
Collapse
|
15
|
Tabassum R, Jeong NY, Jung J. Protective effect of hydrogen sulfide on oxidative stress-induced neurodegenerative diseases. Neural Regen Res 2020; 15:232-241. [PMID: 31552888 PMCID: PMC6905340 DOI: 10.4103/1673-5374.265543] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Hydrogen sulfide is an antioxidant molecule that has a wide range of biological effects against oxidative stress. Balanced oxidative stress is also vital for maintaining cellular function in biological system, where reactive oxygen species are the main source of oxidative stress. When the normal redox balance is disturbed, deoxyribonucleic acid, lipid, and protein molecules are oxidized under pathological conditions, like diabetes mellitus that leads to diabetic peripheral neuropathy. In diabetes mellitus-induced diabetic peripheral neuropathy, due to hyperglycemia, pancreatic beta cell (β cell) shows resistance to insulin secretion. As a consequence, glucose metabolism is disturbed in neuronal cells which are distracted from providing proper cell signaling pathway. Not only diabetic peripheral neuropathy but also other central damages occur in brain neuropathy. Neurological studies regarding type 1 diabetes mellitus patients with Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis have shown changes in the central nervous system because high blood glucose levels (HbA1c) appeared with poor cognitive function. Oxidative stress plays a role in inhibiting insulin signaling that is necessary for brain function. Hydrogen sulfide exhibits antioxidant effects against oxidative stress, where cystathionine β synthase, cystathionine γ lyase, and 3-mercaptopyruvate sulfurtransferase are the endogenous sources of hydrogen sulfide. This review is to explore the pathogenesis of diabetes mellitus-induced diabetic peripheral neuropathy and other neurological comorbid disorders under the oxidative stress condition and the anti-oxidative effects of hydrogen sulfide.
Collapse
Affiliation(s)
- Rubaiya Tabassum
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Seo-gu, Busan, Korea
- Department of Medicine, Graduate School, Dong-A University, Seo-gu, Busan, Korea
| | - Na Young Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Seo-gu, Busan, Korea
- Department of Medicine, Graduate School, Dong-A University, Seo-gu, Busan, Korea
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
| |
Collapse
|
16
|
Bhat A, Mahalakshmi AM, Ray B, Tuladhar S, Hediyal TA, Manthiannem E, Padamati J, Chandra R, Chidambaram SB, Sakharkar MK. Benefits of curcumin in brain disorders. Biofactors 2019; 45:666-689. [PMID: 31185140 DOI: 10.1002/biof.1533] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022]
Abstract
Curcumin is widely consumed in Asia either as turmeric directly or as one of the culinary ingredients in food recipes. The benefits of curcumin in different organ systems have been reported extensively in several neurological diseases and cancer. Curcumin has got its global recognition because of its strong antioxidant, anti-inflammatory, anti-cancer, and antimicrobial activities. Additionally, it is used in diabetes and arthritis as well as in hepatic, renal, and cardiovascular diseases. Recently, there is growing attention on usage of curcumin to prevent or delay the onset of neurodegenerative diseases. This review summarizes available data from several recent studies on curcumin in various neurological diseases such as Alzheimer's disease, Parkinson's disease, Multiple Sclerosis, Huntington's disease, Prions disease, stroke, Down's syndrome, autism, Amyotrophic lateral sclerosis, anxiety, depression, and aging. Recent advancements toward increasing the therapeutic efficacy of curcuma/curcumin formulation and the novel delivery strategies employed to overcome its minimal bioavailability and toxicity studies have also been discussed. This review also summarizes the ongoing clinical trials on curcumin for different neurodegenerative diseases and patent details of curcuma/curcumin in India.
Collapse
Affiliation(s)
- Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Arehally M Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Sunanda Tuladhar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Tousif A Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Esther Manthiannem
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Jagadeeswari Padamati
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Ramesh Chandra
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi, India
- Dr. B. R. Ambedkar Centre for Biomedical Research University of Delhi, Delhi, India
| | - Saravana B Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Meena K Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|