1
|
Panzenhagen AC, Petry FDS, Alves-Teixeira A, Santos L, Carazza-Kessler FG, Gelain DP, Moreira JCF. Biomarkers of methylmercury neurotoxicity and neurodevelopmental features: A systematic review. Food Chem Toxicol 2024; 191:114851. [PMID: 38986832 DOI: 10.1016/j.fct.2024.114851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
The issue of MeHg contamination is a significant concern due to its detrimental impact on the environment. This study aimed to thoroughly investigate the effects of MeHg on neurodevelopmental biomarkers, as there is a lack of systematic reviews in this area. We conducted a comprehensive search of three databases (PubMed, Scopus, and Web of Science) and found 522 records, which were then meticulously reviewed by two independent reviewers. A total of 66 studies were included, with biomarkers related to oxidative stress, neurotransmission, inflammation, epigenetics, and apoptosis being the most prominent. The results of both in vitro and in vivo models indicate that antioxidant enzymes and other oxidative stress-related markers are indeed, altered following MeHg exposure. Moreover, MeHg exposure causes significant disruptions to neurotransmitter levels, activities of neurotransmitter synthesis enzymes, receptor densities, and proteins involved in synaptic function. Proinflammatory biomarkers are consistently overexpressed in both MeHg-treated cells and the brains of exposed rats. Furthermore, studies on DNA methylation and biomarker activity suggest that MeHg exposure may lead to neurotoxicity and neurodevelopmental issues via perturbations to epigenetic markers and the apoptosis pathway.
Collapse
Affiliation(s)
- Alana Castro Panzenhagen
- Centro de Estudos Em Estresse Oxidativo, Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
| | - Fernanda Dos Santos Petry
- Centro de Estudos Em Estresse Oxidativo, Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Alexsander Alves-Teixeira
- Centro de Estudos Em Estresse Oxidativo, Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Lucas Santos
- Centro de Estudos Em Estresse Oxidativo, Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Flávio Gabriel Carazza-Kessler
- Centro de Estudos Em Estresse Oxidativo, Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Daniel Pens Gelain
- Centro de Estudos Em Estresse Oxidativo, Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - José Cláudio Fonseca Moreira
- Centro de Estudos Em Estresse Oxidativo, Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| |
Collapse
|
2
|
Thiel A, Weishaupt AK, Nicolai MM, Lossow K, Kipp AP, Schwerdtle T, Bornhorst J. Simultaneous quantitation of oxidized and reduced glutathione via LC-MS/MS to study the redox state and drug-mediated modulation in cells, worms and animal tissue. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1225:123742. [PMID: 37209457 DOI: 10.1016/j.jchromb.2023.123742] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 05/22/2023]
Abstract
Alterations in reduced and oxidized glutathione (GSH/GSSG) levels represent an important marker for oxidative stress and potential disease progression in toxicological research. Since GSH can be oxidized rapidly, using a stable and reliable method for sample preparation and GSH/GSSG quantification is essential to obtain reproducible data. Here we describe an optimised sample processing combined with a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, validated for different biological matrices (lysates from HepG2 cells, C. elegans, and mouse liver tissue). To avoid autoxidation of GSH, samples were treated with the thiol-masking agent N-ethylmaleimide (NEM) and sulfosalicylic acid (SSA) in a single step. With an analysis time of 5 min, the developed LC-MS/MS method offers simultaneous determination of GSH and GSSG at high sample throughput with high sensitivity. This is especially interesting with respect of screening for oxidative and protective properties of substances in in vitro and in vivo models, e.g. C. elegans. In addition to method validation parameters (linearity, limit of detection (LOD), limit of quantification (LOQ), recovery, interday, intraday), we verified the method by using menadione and L-buthionine-(S,R)-sulfoximine (BSO) as well established modulators of cellular GSH and GSSG concentrations. Thereby menadione proved to be a reliable positive control also in C. elegans.
Collapse
Affiliation(s)
- Alicia Thiel
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | - Ann-Kathrin Weishaupt
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany
| | - Merle M Nicolai
- Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Kristina Lossow
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany; Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany
| | - Anna P Kipp
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany; Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany
| | - Tanja Schwerdtle
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany; German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany.
| |
Collapse
|
3
|
The Modulatory Role of sti-1 in Methylmercury-Induced Toxicity in Caenorhabditis elegans. Neurotox Res 2022; 40:837-846. [PMID: 35471723 DOI: 10.1007/s12640-022-00515-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
Human exposure to the neurotoxin methylmercury (MeHg) poses a significant health risk to the development of the nervous system. The mechanisms of MeHg-induced neurotoxicity are associated with the disruption of cellular homeostasis, and include oxidative stress, loss of calcium homeostasis, and impaired protein quality control. The stress inducible protein 1 (STI-1) is involved in the regulation of protein quality control by acting as a protein cochaperone to maintain optimal protein unfolding and refolding. Here, we utilized the Caenorhabditis elegans (C. elegans) model of MeHg toxicity to characterize the role of the sti-1 gene in MeHg-induced toxicity. We showed that lifespan and developmental milestone timings were significantly altered in sti-1 knockout (KO) animals with MeHg exposure. However, knocking down sti-1 by RNAi did not result in an analogous effect for lifespan, but did still sensitize to delays in developmental milestone progression by acute MeHg, suggesting that insufficiency of sti-1 does not recapitulate all phenotypes of the null mutation. Furthermore, inhibition of ATP levels by MeHg exposure was modulated by sti-1. Considering that the skn-1/gst-4 pathway is highly involved in metal's toxicity, such pathway was also explored in our model. We showed that sti-1 mutant worms exhibited impaired capacity to upregulate the antioxidant genes skn-1/gst-4, highlighting a central role of sti-1 in modulating antioxidant response. Lastly, we showed that loss-of-function mutation in the rrf-3 gene, which encodes a putative RNA-directed RNA polymerase, has significant effect in altering MeHg-induced toxicity by potentiating the animal's detoxification system. Altogether, our novel data show an indispensable role of protein quality control in the defense against MeHg toxicity.
Collapse
|
4
|
Pan J, Li X, Wei Y, Ni L, Xu B, Deng Y, Yang T, Liu W. Advances on the Influence of Methylmercury Exposure during Neurodevelopment. Chem Res Toxicol 2022; 35:43-58. [PMID: 34989572 DOI: 10.1021/acs.chemrestox.1c00255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mercury (Hg) is a toxic heavy-metal element, which can be enriched in fauna and flora and transformed into methylmercury (MeHg). MeHg is a widely distributed environmental pollutant that may be harmful to fish-eating populations through enrichment of aquatic food chains. The central nervous system is a primary target of MeHg. Embryos and infants are more sensitive to MeHg, and exposure to MeHg during gestational feeding can significantly impair the homeostasis of offspring, leading to long-term neurodevelopmental defects. At present, MeHg-induced neurodevelopmental toxicity has become a hotspot in the field of neurotoxicology, but its mechanisms are not fully understood. Some evidence point to oxidative damage, excitotoxicity, calcium ion imbalance, mitochondrial dysfunction, epigenetic changes, and other molecular mechanisms that play important roles in MeHg-induced neurodevelopmental toxicity. In this review, advances in the study of neurodevelopmental toxicity of MeHg exposure during pregnancy and the molecular mechanisms of related pathways are summarized, in order to provide more scientific basis for the study of neurodevelopmental toxicity of MeHg.
Collapse
Affiliation(s)
- Jingjing Pan
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Xiaoyang Li
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Yanfeng Wei
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Linlin Ni
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| |
Collapse
|
5
|
van der Voet M, Teunis M, Louter-van de Haar J, Stigter N, Bhalla D, Rooseboom M, Wever KE, Krul C, Pieters R, Wildwater M, van Noort V. Towards a reporting guideline for developmental and reproductive toxicology testing in C. elegans and other nematodes. Toxicol Res (Camb) 2021; 10:1202-1210. [PMID: 34950447 PMCID: PMC8692742 DOI: 10.1093/toxres/tfab109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/07/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Implementation of reliable methodologies allowing Reduction, Refinement, and Replacement (3Rs) of animal testing is a process that takes several decades and is still not complete. Reliable methods are essential for regulatory hazard assessment of chemicals where differences in test protocol can influence the test outcomes and thus affect the confidence in the predictive value of the organisms used as an alternative for mammals. Although test guidelines are common for mammalian studies, they are scarce for non-vertebrate organisms that would allow for the 3Rs of animal testing. Here, we present a set of 30 reporting criteria as the basis for such a guideline for Developmental and Reproductive Toxicology (DART) testing in the nematode Caenorhabditis elegans. Small organisms like C. elegans are upcoming in new approach methodologies for hazard assessment; thus, reliable and robust test protocols are urgently needed. A literature assessment of the fulfilment of the reporting criteria demonstrates that although studies describe methodological details, essential information such as compound purity and lot/batch number or type of container is often not reported. The formulated set of reporting criteria for C. elegans testing can be used by (i) researchers to describe essential experimental details (ii) data scientists that aggregate information to assess data quality and include data in aggregated databases (iii) regulators to assess study data for inclusion in regulatory hazard assessment of chemicals.
Collapse
Affiliation(s)
| | - Marc Teunis
- Utrecht University of Applied Sciences, Innovative testing in Life Sciences & Chemistry, 3584 CH, Utrecht, the Netherlands
| | - Johanna Louter-van de Haar
- Utrecht University of Applied Sciences, Innovative testing in Life Sciences & Chemistry, 3584 CH, Utrecht, the Netherlands
| | - Nienke Stigter
- Utrecht University of Applied Sciences, Innovative testing in Life Sciences & Chemistry, 3584 CH, Utrecht, the Netherlands
| | - Diksha Bhalla
- KU Leuven, Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, 3001, Leuven, Belgium
| | - Martijn Rooseboom
- Toxicology group Shell International B.V., 2596 HR, The Hague, the Netherlands
| | - Kimberley E Wever
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department for Health Evidence, 6525 GA, Nijmegen, the Netherlands
| | - Cyrille Krul
- Utrecht University of Applied Sciences, Innovative testing in Life Sciences & Chemistry, 3584 CH, Utrecht, the Netherlands
| | - Raymond Pieters
- Utrecht University of Applied Sciences, Innovative testing in Life Sciences & Chemistry, 3584 CH, Utrecht, the Netherlands
- Utrecht University, Institute for Risk Assessment Sciences, 3584 CM, Utrecht, the Netherlands
| | | | - Vera van Noort
- KU Leuven, Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, 3001, Leuven, Belgium
- Leiden University, Institute of Biology Leiden, 2333 BE, Leiden, the Netherlands
| |
Collapse
|
6
|
Methylmercury-Induced Metabolic Alterations in Caenorhabditis elegans Are Diet-Dependent. TOXICS 2021; 9:toxics9110287. [PMID: 34822679 PMCID: PMC8619518 DOI: 10.3390/toxics9110287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 10/29/2021] [Indexed: 01/12/2023]
Abstract
Methylmercury (MeHg) is a well-known neurotoxicant; however, its role in metabolic diseases has been gaining wider attention. Chronic exposure to MeHg in human populations shows an association with diabetes mellitus and metabolic syndrome (MS). As the incidences of both obesity and MS are on the rise globally, it is important to understand the potential role of MeHg in the development of the disease. There is a dearth of information on dietary interactions between MeHg and lipids, which play an important role in developing MS. We have previously shown that MeHg increases food seeking behaviors, lipid levels, fat storage, and pro-adipogenic gene expression in C. elegans fed the standard OP50 Escherichia coli diet. However, we hypothesized that these metabolic changes could be prevented if the worms were fed a bacterial diet lower in lipid content. We tested whether C. elegans developed metabolic alterations in response to MeHg if they were fed two alternative E. coli strains (HT115 and HB101) that are known absorb significantly less lipids from their media. Additionally, to explore the effect of a high-lipid and high-cholesterol diet on MeHg-induced metabolic dysfunction, we supplemented the OP50 strain with twice the standard concentration of cholesterol in the nematode growth media. Wild-type worms fed either the HB101 or HT115 diet were more resistant to MeHg than the worms fed the OP50 diet, showing a significant right-hand shift in the dose–response survival curve. Worms fed the OP50 diet supplemented with cholesterol were more sensitive to MeHg, showing a significant left-hand shift in the dose–response survival curve. Changes in sensitivity to MeHg by differential diet were not due to altered MeHg intake in the worms as measured by inductively coupled mass spectrometry. Worms fed the low-fat diets showed protection from MeHg-induced metabolic changes, including decreased food consumption, lower triglyceride content, and lower fat storage than the worms fed either of the higher-fat diets. Oxidative stress is a common characteristic of both MeHg exposure and high-fat diets. Worms fed either OP50 or OP50 supplemented with cholesterol and treated with MeHg had significantly higher levels of reactive oxygen species, carbonylated proteins, and loss of glutathione than the worms fed the HT115 or HB101 low-lipid diets. Taken together, our data suggest a synergistic effect of MeHg and dietary lipid levels on MeHg toxicity and fat metabolism in C. elegans, which may affect the ability of MeHg to cause metabolic dysfunction.
Collapse
|
7
|
Cahoon CK, Libuda DE. Conditional immobilization for live imaging Caenorhabditis elegans using auxin-dependent protein depletion. G3-GENES GENOMES GENETICS 2021; 11:6362942. [PMID: 34534266 PMCID: PMC8527506 DOI: 10.1093/g3journal/jkab310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/19/2021] [Indexed: 11/12/2022]
Abstract
The visualization of biological processes using fluorescent proteins and dyes in living organisms has enabled numerous scientific discoveries. The nematode Caenorhabditis elegans is a widely used model organism for live imaging studies since the transparent nature of the worm enables imaging of nearly all tissues within a whole, intact animal. While current techniques are optimized to enable the immobilization of hermaphrodite worms for live imaging, many of these approaches fail to successfully restrain the smaller male worms. To enable live imaging of worms of both sexes, we developed a new genetic, conditional immobilization tool that uses the auxin-inducible degron (AID) system to immobilize both adult and larval hermaphrodite and male worms for live imaging. Based on chromosome location, mutant phenotype, and predicted germline consequence, we identified and AID-tagged three candidate genes (unc-18, unc-104, and unc-52). Strains with these AID-tagged genes were placed on auxin and tested for mobility and germline defects. Among the candidate genes, auxin-mediated depletion of UNC-18 caused significant immobilization of both hermaphrodite and male worms that was also partially reversible upon removal from auxin. Notably, we found that male worms require a higher concentration of auxin for a similar amount of immobilization as hermaphrodites, thereby suggesting a potential sex-specific difference in auxin absorption and/or processing. In both males and hermaphrodites, depletion of UNC-18 did not largely alter fertility, germline progression, nor meiotic recombination. Finally, we demonstrate that this new genetic tool can successfully immobilize both sexes enabling live imaging studies of sexually dimorphic features in C. elegans.
Collapse
Affiliation(s)
- Cori K Cahoon
- Department of Biology, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, USA
| | - Diana E Libuda
- Department of Biology, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, USA
| |
Collapse
|
8
|
Olung NF, Aluko OM, Jeje SO, Adeagbo AS, Ijomone OM. Vascular Dysfunction in the Brain; Implications for Heavy Metal Exposures. Curr Hypertens Rev 2021; 17:5-13. [PMID: 33632106 DOI: 10.2174/1573402117666210225085528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/24/2020] [Accepted: 12/01/2020] [Indexed: 11/22/2022]
Abstract
Normal or diseased conditions that alter the brain's requirement for oxygen and nutrients via alterations to neurovascular coupling have an impact on the level of the neurovascular unit; comprising neuronal, glial and vascular components. The communications between the components of the neurovascular unit are precise and accurate for its functions; hence a minute disturbance can result in neurovascular dysfunction. Heavy metals such as cadmium, mercury, and lead have been identified to increase the vulnerability of the neurovascular unit to damage. This review examines the role of heavy metals in neurovascular dysfunctions and the possible mechanisms by which these metals act. Risk factors ranging from lifestyle, environment, genetics, infections, and physiologic ageing involved in neurological dysfunctions were highlighted, while stroke was discussed as the prevalent consequence of neurovascular dysfunctions. Furthermore, the role of these heavy metals in the pathogenesis of stroke consequently pinpoints the importance of understanding the mechanisms of neurovascular damage in a bid to curb the occurrence of neurovascular dysfunctions.
Collapse
Affiliation(s)
- Nzube F Olung
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Oritoke M Aluko
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Sikirullai O Jeje
- Department of Physiology, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Ayotunde S Adeagbo
- Department of Physiology, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Omamuyovwi M Ijomone
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
9
|
Sakamoto M, Kakita A, Sakai K, Kameo S, Yamamoto M, Nakamura M. Methylmercury exposure during the vulnerable window of the cerebrum in postnatal developing rats. ENVIRONMENTAL RESEARCH 2020; 188:109776. [PMID: 32592939 DOI: 10.1016/j.envres.2020.109776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
The developing brain is known to be sensitive to the toxic effects of methylmercury (MeHg). The effects of toxic levels of MeHg exposure during the most seemingly vulnerable window of the cerebrum are not well studied. In this study, we aimed to examine the specific effects of toxic levels of MeHg on neurobehavior, neurodegeneration, and selenoenzyme activity in the cerebrum of infant rats. Male Wistar rats (n = 8/group) were orally treated with MeHg at an acute toxic dose (8 mg Hg/kg/day) for 10 consecutive days starting on postnatal day 14 (P14). The MeHg-exposed rats showed a significant reduction in body weight after day 8 and severe neurological symptoms similar to dystonia on day 12 (P25). Motor coordination deficits determined using the rotarod performance test and short-term memory impairment determined using the Y-maze task were observed in the MeHg-exposed rats on day 11 (P24). The MeHg-exposed rats sacrificed on day 12 showed severe cerebral neuronal degeneration, reactive astrocytosis, and TUNEL-positive apoptotic nuclei, with the cerebral Hg concentration of 15.0 ± 1.6 μg/g. Furthermore, the activities of glutathione peroxidase and thioredoxin reductase in the cerebrum in MeHg-exposed rats were lower than those in control. These results indicate that MeHg exposure to infant rats will be useful to predict the effects of MeHg at the cerebral growth spurt in humans.
Collapse
Affiliation(s)
| | - Akiyoshi Kakita
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Kazuo Sakai
- Japan Institute for the Control of Aging, Nikken SEIL Co., Ltd., Japan
| | - Satomi Kameo
- Department of Public Health, Graduate School of Medicine, Gunma University, Japan; Department of Nutrition, Koshien University, Hyogo, Japan
| | | | | |
Collapse
|
10
|
Modified expression of antioxidant genes in lobster cockroach, Nauphoeta cinerea exposed to methylmercury and monosodium glutamate. Chem Biol Interact 2020; 318:108969. [DOI: 10.1016/j.cbi.2020.108969] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/19/2020] [Accepted: 01/27/2020] [Indexed: 12/21/2022]
|
11
|
Ferguson GD, Bridge WJ. The glutathione system and the related thiol network in Caenorhabditis elegans. Redox Biol 2019. [DOI: 10.1110.1016/j.redox.2019.101171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
12
|
Ferguson GD, Bridge WJ. The glutathione system and the related thiol network in Caenorhabditis elegans. Redox Biol 2019; 24:101171. [PMID: 30901603 PMCID: PMC6429583 DOI: 10.1016/j.redox.2019.101171] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 01/09/2023] Open
Abstract
Advances in the field of redox biology have contributed to the understanding of the complexity of the thiol-based system in mediating signal transduction. The redox environment is the overall spatiotemporal balance of oxidation-reduction systems within the integrated compartments of the cell, tissues and whole organisms. The ratio of the reduced to disulfide glutathione redox couple (GSH:GSSG) is a key indicator of the redox environment and its associated cellular health. The reaction mechanisms of glutathione-dependent and related thiol-based enzymes play a fundamental role in the function of GSH as a redox regulator. Glutathione homeostasis is maintained by the balance of GSH synthesis (de novo and salvage pathways) and its utilization through its detoxification, thiol signalling, and antioxidant defence functions via GSH-dependent enzymes and free radical scavenging. As such, GSH acts in concert with the entire redox network to maintain reducing conditions in the cell. Caenorhabditis elegans offers a simple model to facilitate further understanding at the multicellular level of the physiological functions of GSH and the GSH-dependent redox network. This review discusses the C. elegans studies that have investigated glutathione and related systems of the redox network including; orthologs to the protein-encoding genes of GSH synthesis; glutathione peroxidases; glutathione-S-transferases; and the glutaredoxin, thioredoxin and peroxiredoxin systems.
Collapse
Affiliation(s)
- Gavin Douglas Ferguson
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Wallace John Bridge
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|