1
|
Ahmed MR, Inayathullah M, Morton M, Pothineni VR, Kim K, Ahmed MS, Babar MM, Rajadas J. Intranasal delivery of liposome encapsulated flavonoids ameliorates l-DOPA induced dyskinesia in hemiparkinsonian mice. Biomaterials 2024; 311:122680. [PMID: 38959534 DOI: 10.1016/j.biomaterials.2024.122680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/25/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
In the present study, we explored the development of a novel noninvasive liposomal drug delivery material for use in intranasal drug delivery applications in human diseases. We used drug entrapment into liposomal nanoparticle assembly to efficiently deliver the drugs to the nasal mucosa to be delivered to the brain. The naturally occurring flavonoid 7,8-dihydroxyflavone (7,8-DHF) has previously been shown to have beneficial effects in ameliorating Parkinson's disease (PD). We used both naturally occurring 7,8-DHF and the chemically modified form of DHF, the DHF-ME, to be used as a drug candidate for the treatment of PD and l-DOPA induced dyskinesia (LID), which is the debilitating side effect of l-DOPA therapy in PD. The ligand-protein interaction behavior for 7,8-DHF and 6,7-DHF-ME was found to be more effective with molecular docking and molecular stimulation studies of flavonoid compounds with TrkB receptor. Our study showed that 7,8-DHF delivered via intranasal route using a liposomal formulation ameliorated LID in hemiparkinsonian mice model when these mice were chronically administered with l-DOPA, which is the only current medication for relieving the clinical symptoms of PD. The present study also demonstrated that apart from reducing the LID, 7,8-DHF delivery directly to the brain via the intranasal route also corrected some long-term signaling adaptations involving ΔFosB and α Synuclein in the brain of dopamine (DA) depleted animals.
Collapse
Affiliation(s)
- Mohamed Rafiuddin Ahmed
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute/ Pulmonary and Critical Care, Department of Medicine, Stanford University, 1050 Arastradero Road, Palo Alto, CA, 94304, USA
| | - Mohammed Inayathullah
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute/ Pulmonary and Critical Care, Department of Medicine, Stanford University, 1050 Arastradero Road, Palo Alto, CA, 94304, USA
| | - Mithya Morton
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute/ Pulmonary and Critical Care, Department of Medicine, Stanford University, 1050 Arastradero Road, Palo Alto, CA, 94304, USA; Children's Hospital of Orange County - UC Irvine School of Medicine, Department of Pediatrics, 505 S. Main St., Suite #525, Orange, CA, 92868, USA
| | - Venkata Raveendra Pothineni
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute/ Pulmonary and Critical Care, Department of Medicine, Stanford University, 1050 Arastradero Road, Palo Alto, CA, 94304, USA
| | - Kwangmin Kim
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute/ Pulmonary and Critical Care, Department of Medicine, Stanford University, 1050 Arastradero Road, Palo Alto, CA, 94304, USA; Department of Physiology, Gachon University College of Medicine, Incheon, 21999, South Korea
| | - Mohamed Sohail Ahmed
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute/ Pulmonary and Critical Care, Department of Medicine, Stanford University, 1050 Arastradero Road, Palo Alto, CA, 94304, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, MCN 1161 21st Ave S. Nashville TN 37232, USA
| | - Mustafeez Mujtaba Babar
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute/ Pulmonary and Critical Care, Department of Medicine, Stanford University, 1050 Arastradero Road, Palo Alto, CA, 94304, USA
| | - Jayakumar Rajadas
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute/ Pulmonary and Critical Care, Department of Medicine, Stanford University, 1050 Arastradero Road, Palo Alto, CA, 94304, USA.
| |
Collapse
|
2
|
Kambey PA, Wu J, Liu W, Su M, Buberwa W, Tang C. Targeting serum response factor (SRF) deactivates ΔFosB and mitigates Levodopa-induced dyskinesia in a mouse model of Parkinson's disease. Gene Ther 2024; 31:614-624. [PMID: 39384937 DOI: 10.1038/s41434-024-00492-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024]
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA) is currently the preferred treatment for Parkinson's Disease (PD) and is considered the gold standard. However, prolonged use of L-DOPA in patients can result in involuntary movements known as Levodopa-induced dyskinesia (LID), which includes uncontrollable dystonia affecting the trunk, limbs, and face. The role of ΔFosB protein, a truncated splice variant of the FosB gene, in LID has been acknowledged, but its underlying mechanism has remained elusive. Here, using a mouse model of Parkinson's disease treated with chronic levodopa we demonstrate that serum response factor (SRF) binds to the FosB promoter, thereby activating FosB expression and levodopa induced-dyskinetic movements. Western blot analysis demonstrates a significant increase in SRF expression in the dyskinetic group compared to the control group. Knocking down SRF significantly reduced abnormal involuntary movements (AIMS) and ΔFosB expression compared to the control. Conversely, overexpression of SRF led to an increase in ΔFosB expression and worsened levodopa-induced dyskinesia. To shed light on the regulatory role of the Akt signaling pathway in this phenomenon, we administered the Akt agonist SC79 to PD mouse models via intraperitoneal injection, followed by L-DOPA administration. The expression of SRF, ΔFosB, and phosphorylated Akt (p-Akt) significantly increased in this group compared to the group receiving normal saline to signify that these happen through Akt signaling pathway. Collectively, our findings identify a promising therapeutic target for addressing levodopa-induced dyskinesia.
Collapse
Affiliation(s)
- Piniel Alphayo Kambey
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China.
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou Science Park, Huangpu District, Guangzhou, China.
| | - Jiao Wu
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - WenYa Liu
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Mingyu Su
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Wokuheleza Buberwa
- Department of Neurology, The second affiliated hospital of Xi'an Jiaotong University, 710049, Xi'an, China
| | - Chuanxi Tang
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China.
| |
Collapse
|
3
|
Kambey PA, Liu WY, Wu J, Tang C, Buberwa W, Saro A, Nyalali AMK, Gao D. Amphiregulin blockade decreases the levodopa-induced dyskinesia in a 6-hydroxydopamine Parkinson's disease mouse model. CNS Neurosci Ther 2023; 29:2925-2939. [PMID: 37101388 PMCID: PMC10493657 DOI: 10.1111/cns.14229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Levodopa (L-DOPA) is considered the most reliable drug for treating Parkinson's disease (PD) clinical symptoms. Regrettably, long-term L-DOPA therapy results in the emergence of drug-induced abnormal involuntary movements (AIMs) in most PD patients. The mechanisms underlying motor fluctuations and dyskinesia induced by L-DOPA (LID) are still perplexing. METHODS Here, we first performed the analysis on the microarray data set (GSE55096) from the gene expression omnibus (GEO) repository and identified the differentially expressed genes (DEGs) using linear models for microarray analysis (Limma) R packages from the Bioconductor project. 12 genes (Nr4a2, Areg, Tinf2, Ptgs2, Pdlim1, Tes, Irf6, Tgfb1, Serpinb2, Lipg, Creb3l1, Lypd1) were found to be upregulated. Six genes were validated on quantitative polymerase chain reaction and subsequently, Amphiregulin (Areg) was selected (based on log2 fold change) for further experiments to unravel its involvement in LID. Areg LV_shRNA was used to knock down Areg to explore its therapeutic role in the LID model. RESULTS Western blotting and immunofluorescence results show that AREG is significantly expressed in the LID group relative to the control. Dyskinetic movements in LID mice were alleviated by Areg knockdown, and the protein expression of delta FOSB, the commonly attributable protein in LID, was decreased. Moreover, Areg knockdown reduced the protein expression of P-ERK. In order to ascertain whether the inhibition of the ERK pathway (a common pathway known to mediate levodopa-induced dyskinesia) could also impede Areg, the animals were injected with an ERK inhibitor (PD98059). Afterward, the AIMs, AREG, and ERK protein expression were measured relative to the control group. A group treated with ERK inhibitor had a significant decrease of AREG and phosphorylated ERK protein expression relative to the control group. CONCLUSION Taken together, our results indicate unequivocal involvement of Areg in levodopa-induced dyskinesia, thus a target for therapy development.
Collapse
Affiliation(s)
- Piniel Alphayo Kambey
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and AnatomyXuzhou Medical UniversityXuzhouChina
- Organization of African Academic Doctors (OAAD)NairobiKenya
| | - Wen Ya Liu
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and AnatomyXuzhou Medical UniversityXuzhouChina
| | - Jiao Wu
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and AnatomyXuzhou Medical UniversityXuzhouChina
| | - Chuanxi Tang
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and AnatomyXuzhou Medical UniversityXuzhouChina
| | - Wokuheleza Buberwa
- Department of PediatricsThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Adonira Saro
- Department of Anatomy and Neurobiology, School of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Alphonce M. K. Nyalali
- Department of Neurosurgery, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Dianshuai Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and AnatomyXuzhou Medical UniversityXuzhouChina
| |
Collapse
|
4
|
Kambey PA, Chengcheng M, Xiaoxiao G, Abdulrahman AA, Kanwore K, Nadeem I, Jiao W, Gao D. The orphan nuclear receptor Nurr1 agonist amodiaquine mediates neuroprotective effects in 6-OHDA Parkinson's disease animal model by enhancing the phosphorylation of P38 mitogen-activated kinase but not PI3K/AKT signaling pathway. Metab Brain Dis 2021; 36:609-625. [PMID: 33507465 DOI: 10.1007/s11011-021-00670-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/07/2021] [Indexed: 01/23/2023]
Abstract
Recent studies implicate the defects or altered expression of the orphan nuclear receptor Nurr1 gene in the substantia nigra in Parkinson's disease pathogenesis. In an attempt to corroborate the treatment-modifying disease that would replicate the effect of Nurr1, it has been found that amodiaquine and Nurr1 had the same chemical scaffolding, indicating a crucial structure-activity relationship. Interestingly, amodiaquine stimulate the transcriptional function of Nurr1 by physical interaction with its ligand-binding domain (LBD). However, the signaling route by which Nurr1 is activated by amodiaquine to cause the protective effect remains to be elucidated. We first demonstrated that amodiaquine treatment ameliorated behavioural deficits in 6-OHDA Parkinson's disease mouse model, and it promoted dopaminergic neurons protection signified by Tyrosine hydroxylase (TH) and dopamine transporter (DAT) mRNA; Tyrosine hydroxylase (TH) protein expression level and the immunoreactivity in the substantia nigra compacta. Subsequently, we used inhibitors to ascertain the effect of amodiaquine on Akt and P38 Mapk as crucial signaling pathways for neuroprotection. Wortmannin (Akt Inhibitor) induced a significant reduction of Akt mRNA; however, there was no statistical difference between the amodiaquine-treated group and the control group suggesting that amodiaquine may not be the active stimulant of Akt. Western blot analysis confirmed that the phosphorylated Akt decreased significantly in the amodiaquine group compared to the control group. In the same vein, we found that amodiaquine substantially increased the level of phosphorylated P38 Mapk. When P38 Mapk inhibited by SB203580 (P38-Mapk Inhibitor), the total P38 Mapk but not the phosphorylated P38 Mapk decreased significantly, while tyrosine hydroxylase significantly increased. These results collectively suggest that amodiaquine can augment tyrosine hydroxylase expression via phosphorylated P38 Mapk while negatively regulating the phosphorylated Akt in protein expression.
Collapse
Affiliation(s)
- Piniel Alphayo Kambey
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Ma Chengcheng
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Guo Xiaoxiao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Ayanlaja Abiola Abdulrahman
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Kouminin Kanwore
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Iqra Nadeem
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Wu Jiao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Dianshuai Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
5
|
Steece-Collier K, Collier TJ, Lipton JW, Stancati JA, Winn ME, Cole-Strauss A, Sellnow R, Conti MM, Mercado NM, Nillni EA, Sortwell CE, Manfredsson FP, Bishop C. Striatal Nurr1, but not FosB expression links a levodopa-induced dyskinesia phenotype to genotype in Fisher 344 vs. Lewis hemiparkinsonian rats. Exp Neurol 2020; 330:113327. [PMID: 32387398 DOI: 10.1016/j.expneurol.2020.113327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/23/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022]
Abstract
Numerous genes, and alterations in their expression, have been identified as risk factors for developing levodopa-induced dyskinesia (LID). However, our understanding of the complexities of molecular changes remains insufficient for development of clinical treatment. In the current study we used gene array, in situ hybridization, immunohistochemistry, and microdialysis to provide a unique compare and contrast assessment of the relationship of four candidate genes to LID, employing three genetically distinct rat strains (Sprague-Dawley (SD), Fischer-344 (F344) and Lewis-RT.1) showing differences in dyskinesia susceptibility and 'first-ever LID' versus 'chronic LID' expression in subjects displaying equal dyskinesia severity. In these studies, rat strains were easily distinguishable for their LID propensity with: 1) a majority of SD rats expressing LID (LID+) and a subset being resistant (LID-); 2) all F344 rats readily developing (LID+); and 3) all Lewis rats being LID-resistant (LID-). Following chronic levodopa, LID+ SD rats showed significant increases in candidate gene expression: Nr4a2/(Nurr1) > > Trh > Inhba = Fosb. However, SD rats with long-standing striatal dopamine (DA) depletion treated with first-ever versus chronic high-dose levodopa revealed that despite identical levels of LID severity: 1) Fosb and Nurr1 transcripts but not protein were elevated with acute LID expression; 2) FOSB/ΔFOSB and NURR1 proteins were elevated only with chronic LID; and 3) Trh transcript and protein were elevated only with chronic LID. Strikingly, despite similar levodopa-induced striatal DA release in both LID-expressing F344 and LID-resistant Lewis rats, Fosb, Trh, Inhba transcripts were significantly elevated in both strains; however, Nurr1 mRNA was significantly increased only in LID+ F344 rats. These findings suggest a need to reevaluate currently accepted genotype-to-phenotype relationships in the expression of LID, specifically that of Fosb, a transcription factor generally assumed to play a causal role, and Nurr1, a transcription factor that has received significant attention in PD research linked to its critical role in the survival and function of midbrain DA neurons but who's striatal expression, generally below levels of detection, has remained largely unexplored as a regulator of LID. Finally these studies introduce a novel 'model' (inbred F344 vs inbred Lewis) that may provide a powerful tool for investigating the role for 'dyskinesia-resistance' genes downstream of 'dyskinesia-susceptibility' genes in modulating LID expression, a concept that has received considerably less attention and offers a new ways of thinking about antidyskinetic therapies.
Collapse
Affiliation(s)
- Kathy Steece-Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI 49503, USA.
| | - Timothy J Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI 49503, USA
| | - Jack W Lipton
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI 49503, USA
| | - Jennifer A Stancati
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Mary E Winn
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Allyson Cole-Strauss
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Rhyomi Sellnow
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Melissa M Conti
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| | - Natosha M Mercado
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Eduardo A Nillni
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Caryl E Sortwell
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI 49503, USA
| | - Fredric P Manfredsson
- Parkinson's Disease Research Unit, Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| |
Collapse
|