1
|
Sharma V, Sharma P, Singh TG. Emerging role of Nrf2 in Parkinson's disease therapy: a critical reassessment. Metab Brain Dis 2024; 40:70. [PMID: 39699763 DOI: 10.1007/s11011-024-01452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/30/2024] [Indexed: 12/20/2024]
Abstract
Parkinson's disease (PD) is the neurodegenerative disorder characterized by the progressive degeneration of nigrostriatal dopaminergic neurons, leading to the range of motor and non-motor symptoms. There is mounting evidence suggesting that oxidative stress, neuroinflammation and mitochondrial dysfunction play pivotal roles in the pathogenesis of PD. Current therapies only alleviate perturbed motor symptoms. Therefore, it is essential to find out new therapies that allow us to improve not only motor symptoms, but non-motor symptoms like cognitive impairment and modulate disease progression. Nuclear factor erythroid 2-related factor 2 (Nrf2) is transcription factor that regulates the expression of numerous anti-oxidants and cytoprotective genes can counteract oxidative stress, neuroinflammation and mitochondrial dysfunction, thereby potentially ameliorating PD-associated pathology. The current review discusses about the Nrf2 structure and function with special emphasis on various molecular signalling pathways involved in positive and negative modulation of Nrf2, namely Glycogen synthase kinase-3β, Phosphoinositide-3-kinase, AMP-activated protein kinase, Mitogen activated protein kinase, nuclear factor-κB and P62. Furthermore, this review highlights the various Nrf2 activators as promising therapeutic agents for slowing down the progression of PD.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Prateek Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
2
|
Fang Y, Zheng Y, Gao Q, Pang M, Wu Y, Feng X, Tao X, Hu Y, Lin Z, Lin W. Activation of the Nrf2/Keap1 signaling pathway mediates the neuroprotective effect of Perillyl alcohol against cerebral hypoxic-ischemic damage in neonatal rats. Redox Rep 2024; 29:2394714. [PMID: 39284589 PMCID: PMC11407389 DOI: 10.1080/13510002.2024.2394714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a severe disease with a poor prognosis, whose clinical treatment is still limited to therapeutic hypothermia with limited efficacy. Perillyl alcohol (POH), a natural monoterpene found in various plant essential oils, has shown neuroprotective properties, though its effects on HIE are not well understood. This study investigates the neuroprotective effects of POH on HIE both in vitro and in vivo. We established an in vitro model using glucose deprivation and hypoxia/reperfusion (OGD/R) in PC12 cells, alongside an in vivo model via the modified Rice-Vannucci method. Results indicated that POH acted as an indirect antioxidant, reducing inducible nitric oxide synthase and malondialdehyde production, maintaining content of antioxidant molecules and enzymes in OGD/R-induced PC12 cells. In vivo, POH remarkably lessened infarct volume, reduced cerebral edema, accelerated tissue regeneration, and blocked reactive astrogliosis after hypoxic-ischemic brain injury. POH exerted antiapoptotic activities through both the intrinsic and extrinsic apoptotic pathways. Mechanistically, POH activated Nrf2 and inactivated its negative regulator Keap1. The use of ML385, a Nrf2 inhibitor, reversed these effects. Overall, POH mitigates neuronal damage in HIE by combating oxidative stress, reducing inflammation, and inhibiting apoptosis via the Nrf2/Keap1 pathway, suggesting its potential for HIE treatment.
Collapse
Affiliation(s)
- Yu Fang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yihui Zheng
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Qiqi Gao
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Mengdan Pang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yiqing Wu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoli Feng
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoyue Tao
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yingying Hu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Wei Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
3
|
Sophronea T, Agrawal S, Kumari N, Mishra J, Walecha V, Luthra PM. A 2AR antagonists triggered the AMPK/m-TOR autophagic pathway to reverse the calcium-dependent cell damage in 6-OHDA induced model of PD. Neurochem Int 2024; 178:105793. [PMID: 38880232 DOI: 10.1016/j.neuint.2024.105793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Calcium dyshomeostasis, oxidative stress, autophagy and apoptosis are the pathogenesis of selective dopaminergic neuronal loss in Parkinson's disease (PD). Earlier, we reported that A2A R modulates IP3-dependent intracellular Ca2+ signalling via PKA. Moreover, A2A R antagonist has been reported to reduce oxidative stress and apoptosis in PD models, however intracellular Ca2+ ([Ca2+]i) dependent autophagy regulation in the 6-OHDA model of PD has not been explored. In the present study, we investigated the A2A R antagonists mediated neuroprotective effects in 6-OHDA-induced primary midbrain neuronal (PMN) cells and unilateral lesioned rat model of PD. 6-OHDA-induced oxidative stress (ROS and superoxide) and [Ca2+]i was measured using Fluo4AM, DCFDA and DHE dye respectively. Furthermore, autophagy was assessed by Western blot of p-m-TOR/mTOR, p-AMPK/AMPK, LC3I/II, Beclin and β-actin. Apoptosis was measured by Annexin V-APC-PI detection and Western blot of Bcl2, Bax, caspase3 and β-actin. Dopamine levels were measured by Dopamine ELISA kit and Western blot of tyrosine hydroxylase. Our results suggest that 6-OHDA-induced PMN cell death occurred due to the interruption of [Ca2+]i homeostasis, accompanied by activation of autophagy and apoptosis. A2A R antagonists prevented 6-OHDA-induced neuronal cell death by decreasing [Ca2+]i overload and oxidative stress. In addition, we found that A2A R antagonists upregulated mTOR phosphorylation and downregulated AMPK phosphorylation thereby reducing autophagy and apoptosis both in 6-OHDA induced PMN cells and 6-OHDA unilateral lesioned rat model. In conclusion, A2A R antagonists alleviated 6-OHDA toxicity by modulating [Ca2+]i signalling to inhibit autophagy mediated by the AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Tuithung Sophronea
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India
| | - Saurabh Agrawal
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India
| | - Namrata Kumari
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India
| | - Jyoti Mishra
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India
| | - Vaishali Walecha
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India
| | - Pratibha Mehta Luthra
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
4
|
Zhang L, Wang G, Li Z, Yang J, Li H, Wang W, Li Z, Li H. Molecular pharmacology and therapeutic advances of monoterpene perillyl alcohol. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155826. [PMID: 38897045 DOI: 10.1016/j.phymed.2024.155826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/20/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Perillyl alcohol (POH) is a aroma monoterpene commonly obtained from various plants' essential oil. Recently, increasing researches have demonstrated that POH may be useful, not only as flavor compound, but also as bioactive molecule because of a variety of biological activities. PURPOSE The aim of this review is to summarize the production, pharmacological activities and molecular mechanism, active derivatives, toxicity and parmacokinetics, and industrial application of POH. METHODS A systematic search of published articles up to January 2024 in Web of Science, China Knowledge Network, and PubMed databases is conducted using the following keywords: POH, POH derivatives, biological or pharmacological, production or synthesis, pharmacokinetics, toxicity and application. RESULTS Biotechnological production is considered to be a potential alternative approach to generate POH. POH provides diverse pharmacological benefits, including anticancer, antimicrobial, insecticidal, antioxidant, anti-inflammatory, hypotensive, vasorelaxant, antinociceptive, antiasthmatic, hepatoprotective effects, etc. The underlying mechanisms of action include modulation of NF-κB, JNK/c-Jun, Notch, Akt/mTOR, PI3K/Akt/eNOS, STAT3, Nrf2 and ERS response pathways, mitigation of mitochondrial dysfunction and membrane integrity damage, and inhibition of ROS accumulation, pro-inflammatory cytokines release and NLRP3 activation. What's more, the proteins or genes influenced by POH against diseases refer to Bax, Bcl-2, cyclin D1, CDK, p21, p53, HIF-1α, AP-1, caspase-3, M6P/IGF2R, PARP, VEGF, etc. Some clinical studies report that intranasal delivery of POH is a safe and effective treatment for cancer, but further clinical investigations are needed to confirm other health benefits of POH in human healthy. Depending on these health-promoting properties together with desirable flavor and safety, POH can be employed as dietary supplement, preservative and flavor additive in food and cosmetic fields, as building block in synthesis fields, as anticancer drug in medicinal fields, and as pesticides and herbicides in agricultural fields. CONCLUSION This review systematically summarizes the recent advances in POH and highlights its therapeutic effects and potential mechanisms as well as the clinical settings, which is helpful to develop POH into functional food and new candidate drug for prevention and management of diseases. Future studies are needed to conduct more biological activity studies of POH and its derivatives, and check their clinical efficacy and potential side effects.
Collapse
Affiliation(s)
- Lulu Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China.
| | - Guoguo Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China
| | - Zehao Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China
| | - Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, Henan 450000, PR China.
| | - Haoliang Li
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, Henan 450000, PR China
| | - Wanying Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China
| | - Zhijian Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China
| | - Hua Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
5
|
Armeli F, Mengoni B, Laskin DL, Businaro R. Interplay among Oxidative Stress, Autophagy, and the Endocannabinoid System in Neurodegenerative Diseases: Role of the Nrf2- p62/SQSTM1 Pathway and Nutraceutical Activation. Curr Issues Mol Biol 2024; 46:6868-6884. [PMID: 39057052 PMCID: PMC11276139 DOI: 10.3390/cimb46070410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
The onset of neurodegenerative diseases involves a complex interplay of pathological mechanisms, including protein aggregation, oxidative stress, and impaired autophagy. This review focuses on the intricate connection between oxidative stress and autophagy in neurodegenerative disorders, highlighting autophagy as pivotal in disease pathogenesis. Reactive oxygen species (ROS) play dual roles in cellular homeostasis and autophagy regulation, with disruptions of redox signaling contributing to neurodegeneration. The activation of the Nrf2 pathway represents a critical antioxidant mechanism, while autophagy maintains cellular homeostasis by degrading altered cell components. The interaction among p62/SQSTM1, Nrf2, and Keap1 forms a regulatory pathway essential for cellular stress response, whose dysregulation leads to impaired autophagy and aggregate accumulation. Targeting the Nrf2-p62/SQSTM1 pathway holds promise for therapeutic intervention, mitigating oxidative stress and preserving cellular functions. Additionally, this review explores the potential synergy between the endocannabinoid system and Nrf2 signaling for neuroprotection. Further research is needed to elucidate the involved molecular mechanisms and develop effective therapeutic strategies against neurodegeneration.
Collapse
Affiliation(s)
- Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (B.M.)
| | - Beatrice Mengoni
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (B.M.)
| | - Debra L. Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA;
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (B.M.)
| |
Collapse
|
6
|
Zuzarte M, Sousa C, Alves-Silva J, Salgueiro L. Plant Monoterpenes and Essential Oils as Potential Anti-Ageing Agents: Insights from Preclinical Data. Biomedicines 2024; 12:365. [PMID: 38397967 PMCID: PMC10886757 DOI: 10.3390/biomedicines12020365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Ageing is a natural process characterized by a time-dependent decline of physiological integrity that compromises functionality and inevitably leads to death. This decline is also quite relevant in major human pathologies, being a primary risk factor in neurodegenerative diseases, metabolic disorders, cardiovascular diseases and musculoskeletal disorders. Bearing this in mind, it is not surprising that research aiming at improving human health during this process has burst in the last decades. Importantly, major hallmarks of the ageing process and phenotype have been identified, this knowledge being quite relevant for future studies towards the identification of putative pharmaceutical targets, enabling the development of preventive/therapeutic strategies to improve health and longevity. In this context, aromatic plants have emerged as a source of potential bioactive volatile molecules, mainly monoterpenes, with many studies referring to their anti-ageing potential. Nevertheless, an integrated review on the current knowledge is lacking, with several research approaches studying isolated ageing hallmarks or referring to an overall anti-ageing effect, without depicting possible mechanisms of action. Herein, we aim to provide an updated systematization of the bioactive potential of volatile monoterpenes on recently proposed ageing hallmarks, and highlight the main mechanisms of action already identified, as well as possible chemical entity-activity relations. By gathering and categorizing the available scattered information, we also aim to identify important research gaps that could help pave the way for future research in the field.
Collapse
Affiliation(s)
- Mónica Zuzarte
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.A.-S.); (L.S.)
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Cátia Sousa
- iNOVA4HEALTH, NOVA Medical School, Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, 1159-056 Lisboa, Portugal;
- Centro Clínico e Académico de Lisboa, 1156-056 Lisboa, Portugal
| | - Jorge Alves-Silva
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.A.-S.); (L.S.)
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.A.-S.); (L.S.)
- Univ Coimbra, Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| |
Collapse
|
7
|
Venkatesan D, Iyer M, Narayanasamy A, Gopalakrishnan AV, Vellingiri B. Plausible Role of Mitochondrial DNA Copy Number in Neurodegeneration-a Need for Therapeutic Approach in Parkinson's Disease (PD). Mol Neurobiol 2023; 60:6992-7008. [PMID: 37523043 DOI: 10.1007/s12035-023-03500-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Parkinson's disease (PD) is an advancing age-associated progressive brain disorder which has various diverse factors, among them mitochondrial dysfunction involves in dopaminergic (DA) degeneration. Aging causes a rise in mitochondrial abnormalities which leads to structural and functional modifications in neuronal activity and cell death in PD. This ends in deterioration of mitochondrial function, mitochondrial alterations, mitochondrial DNA copy number (mtDNA CN) and oxidative phosphorylation (OXPHOS) capacity. mtDNA levels or mtDNA CN in PD have reported that mtDNA depletion would be a predisposing factor in PD pathogenesis. To maintain the mtDNA levels, therapeutic approaches have been focused on mitochondrial biogenesis in PD. The depletion of mtDNA levels in PD can be influenced by autophagic dysregulation, apoptosis, neuroinflammation, oxidative stress, sirtuins, and calcium homeostasis. The current review describes the regulation of mtDNA levels and discusses the plausible molecular pathways in mtDNA CN depletion in PD pathogenesis. We conclude by suggesting further research on mtDNA depletion which might show a promising effect in predicting and diagnosing PD.
Collapse
Affiliation(s)
- Dhivya Venkatesan
- Centre for Neuroscience, Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore, 641021, India
| | - Mahalaxmi Iyer
- Centre for Neuroscience, Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore, 641021, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India
| | - Balachandar Vellingiri
- Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|
8
|
Podturkina AV, Ardashov OV, Volcho KP, Salakhutdinov NF. A New Stereoselective Approach to the Substitution of Allyl Hydroxy Group in para-Mentha-1,2-diol in the Search for New Antiparkinsonian Agents. Molecules 2023; 28:7303. [PMID: 37959723 PMCID: PMC10650740 DOI: 10.3390/molecules28217303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Two approaches to the synthesis of para-menthene epoxide ((1S,5S,6R)-4) are developed. The first approach includes a reaction between chlorohydrin 7 and NaH in THF. The second involves the formation of epoxide in the reaction of corresponding diacetate 6 with sodium tert-butoxide. One possible mechanism of this reaction is proposed to explain unexpected outcomes in the regio- and stereospecificity of epoxide (1S,5S,6R)-4 formation. The epoxide ring in (1S,5S,6R)-4 is then opened by various S- and O-nucleophiles. This series of reactions allows for the stereoselective synthesis of diverse derivatives of the monoterpenoid Prottremine 1, a compound known for its antiparkinsonian activity, including promising antiparkinsonian properties.
Collapse
Affiliation(s)
| | | | - Konstantin P. Volcho
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (A.V.P.); (O.V.A.); (N.F.S.)
| | | |
Collapse
|
9
|
Alharbi M, Alshammari A, Kaur G, Kalra S, Mehan S, Suri M, Chhabra S, Kumar N, Alanazi WA, Alshanwani AR, AL-Ghamdi AH, Narula AS, Kalfin R. Effect of Natural Adenylcyclase/cAMP/CREB Signalling Activator Forskolin against Intra-Striatal 6-OHDA-Lesioned Parkinson's Rats: Preventing Mitochondrial, Motor and Histopathological Defects. Molecules 2022; 27:7951. [PMID: 36432051 PMCID: PMC9695774 DOI: 10.3390/molecules27227951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
Parkinson's disease (PD) is characterised by dopaminergic neuronal loss in the brain area. PD is a complex disease that deteriorates patients' motor and non-motor functions. In experimental animals, the neurotoxin 6-OHDA induces neuropathological, behavioural, neurochemical and mitochondrial abnormalities and the formation of free radicals, which is related to Parkinson-like symptoms after inter-striatal 6-OHDA injection. Pathological manifestations of PD disrupt the cAMP/ATP-mediated activity of the transcription factor CREB, resulting in Parkinson's-like symptoms. Forskolin (FSK) is a direct AC/cAMP/CREB activator isolated from Coleus forskohlii with various neuroprotective properties. FSK has already been proven in our laboratory to directly activate the enzyme adenylcyclase (AC) and reverse the neurodegeneration associated with the progression of Autism, Multiple Sclerosis, ALS, and Huntington's disease. Several behavioural paradigms were used to confirm the post-lesion effects, including the rotarod, open field, grip strength, narrow beam walk (NBW) and Morris water maze (MWM) tasks. Our results were supported by examining brain cellular, molecular, mitochondrial and histopathological alterations. The FSK treatment (15, 30 and 45 mg/kg, orally) was found to be effective in restoring behavioural and neurochemical defects in a 6-OHDA-induced experimental rat model of PD. As a result, the current study successfully contributes to the investigation of FSK's neuroprotective role in PD prevention via the activation of the AC/cAMP/PKA-driven CREB pathway and the restoration of mitochondrial ETC-complex enzymes.
Collapse
Affiliation(s)
- Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Gurpreet Kaur
- Department of Pharmacology, Rajendra Institute of Technology and Sciences, Hisar Road, 4th Mile Stone, Sirsa, Haryana 125055, India
| | - Sanjeev Kalra
- Department of Pharmacology, Rajendra Institute of Technology and Sciences, Hisar Road, 4th Mile Stone, Sirsa, Haryana 125055, India
| | - Sidharth Mehan
- Department of Pharmacology, Rajendra Institute of Technology and Sciences, Hisar Road, 4th Mile Stone, Sirsa, Haryana 125055, India
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga 142001, Punjab, India
| | - Manisha Suri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga 142001, Punjab, India
| | - Swesha Chhabra
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga 142001, Punjab, India
| | - Nitish Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga 142001, Punjab, India
| | - Wael A. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Aliah R. Alshanwani
- Physiology Department, College of Medicine & King Khalid University Hospital, King Saud University, Riyadh 12372, Saudi Arabia
| | - Abdullah Hamed AL-Ghamdi
- Pharmaceutical Care Department, Namerah General Hospital, Ministry of Health, Namerah 65439, Saudi Arabia
| | | | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria
- Department of Healthcare, South-West University “NeofitRilski”, Ivan Mihailov St. 66, 2700 Blagoevgrad, Bulgaria
| |
Collapse
|
10
|
Liu Y, Wang M, Lu Y, Zhang S, Kang L, Zheng G, Ren Y, Guo X, Zhao H, Hao H. Construction and validation of a novel and superior protein risk model for prognosis prediction in esophageal cancer. Front Genet 2022; 13:1055202. [DOI: 10.3389/fgene.2022.1055202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022] Open
Abstract
Esophageal cancer (EC) is recognized as one of the most common malignant tumors in the word. Based on the biological process of EC occurrence and development, exploring molecular biomarkers can provide a good guidance for predicting the risk, prognosis and treatment response of EC. Proteomics has been widely used as a technology that identifies, analyzes and quantitatively acquires the composition of all proteins in the target tissues. Proteomics characterization applied to construct a prognostic signature will help to explore effective biomarkers and discover new therapeutic targets for EC. This study showed that we established a 8 proteins risk model composed of ASNS, b-Catenin_pT41_S45, ARAF_pS299, SFRP1, Vinculin, MERIT40, BAK and Atg4B via multivariate Cox regression analysis of the proteome data in the Cancer Genome Atlas (TCGA) to predict the prognosis power of EC patients. The risk model had the best discrimination ability and could distinguish patients in the high- and low-risk groups by principal component analysis (PCA) analysis, and the high-risk patients had a poor survival status compared with the low-risk patients. It was confirmed as one independent and superior prognostic predictor by the receiver operating characteristic (ROC) curve and nomogram. K-M survival analysis was performed to investigate the relationship between the 8 proteins expressions and the overall survival. GSEA analysis showed KEGG and GO pathways enriched in the risk model, such as metabolic and cancer-related pathways. The high-risk group presented upregulation of dendritic cells resting, macrophages M2 and NK cells activated, downregulation of plasma cells, and multiple activated immune checkpoints. Most of the potential therapeutic drugs were more appropriate treatment for the low-risk patients. Through adequate analysis and verification, this 8 proteins risk model could act as a great prognostic evaluation for EC patients and provide new insight into the diagnosis and treatment of EC.
Collapse
|
11
|
Sheibani V, Rajizadeh MA, Bejeshk MA, Haghparast E, Nozari M, Esmaeili-Mahani S, Nezhadi A. The effects of neurosteroid allopregnanolone on synaptic dysfunction in the hippocampus in experimental parkinsonism rats: An electrophysiological and molecular study. Neuropeptides 2022; 92:102229. [PMID: 35158223 DOI: 10.1016/j.npep.2022.102229] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/18/2022] [Accepted: 02/03/2022] [Indexed: 02/07/2023]
Abstract
The dopaminergic system is a powerful candidate targeted for changes of synaptic plasticity in the hippocampus. Higher incidence of Parkinson's disease (PD) in men than women indicates the influence of sex hormones on the PD development. Previous studies have shown that neurodegenerative diseases such as PD are related to the decline of Allopregnanolon (Allo), a metabolite of progesterone; it is also well known that learning and memory are influenced by oscillations in steroidal hormones. Although abnormalities in hippocampal plasticity have been observed in the toxic models of PD, effects of Allo on hippocampal LTP and hippocampal synaptic protein levels, which play an important role in maintaining the integrity of neural connections, have never been analyzed thus far. Experimental groups subjected to the long-term potentiation (LTP) were studied in the CA1 area of the hippocampus. In addition, the levels of hippocampal postsynaptic density protein 95 (PSD-95), neurexin-1 (Nrxn1) and neuroligin (Nlgn) as synaptic molecular components were determined by immunoblotting. Although dopamine denervation did not alter basal synaptic transmission and pair-pulse facilitation of field excitatory postsynaptic potentials (fEPSPs), the induction and maintenance of LTP were impaired in the CA1 region. In addition, the levels of PSD-95, Nrxn1 and Nlgn were significantly decreased in the hippocampus of 6-OHDA-treated animals. Such abnormalities in synaptic electrophysiological aspects and protein levels were abolished by the treatment with Allo. These findings showed that partial dopamine depletion led to unusual synaptic plasticity in the CA1 as well as the decrease in synaptic proteins in the hippocampus. Our results demonstrated that Allo ameliorated these deficits and preserved pre- and post-synaptic proteins. Therefore, Allo may be an effective factor in maintaining synaptic integrity in the mesolimbic pathway.
Collapse
Affiliation(s)
- Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Haghparast
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Masoumeh Nozari
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Akram Nezhadi
- Trauma Research Center, Aja University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Chakkittukandiyil A, Sajini DV, Karuppaiah A, Selvaraj D. The principal molecular mechanisms behind the activation of Keap1/Nrf2/ARE pathway leading to neuroprotective action in Parkinson's disease. Neurochem Int 2022; 156:105325. [PMID: 35278519 DOI: 10.1016/j.neuint.2022.105325] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder. PD is associated with the loss of dopaminergic neurons in the substantia nigra pars compacta region of the midbrain. Present therapies for PD provide only symptomatic relief by restoring the dopamine (DA) level. However, they are not disease modifying agents and so they do not delay the disease progression. Alpha-synuclein aggregation, oxidative stress, mitochondrial dysfunction and chronic inflammation are considered to be the major pathological mechanisms mediating neurodegeneration in PD. To resist oxidative stress, the human body has an antioxidant defence mechanism consisting of many antioxidants and cytoprotective genes. The expression of those genes are largely controlled by the Kelch-like ECH-associated protein 1/Nuclear factor - erythroid - 2 - related factor 2/Antioxidant response element (Keap1/Nrf2/ARE) signalling pathway. The transcription factor Nrf2 is activated in response to oxidative or electrophilic stress and protects the cells from oxidative stress and inflammation. Nrf2 has been widely considered as a therapeutic target for neurodegeneration and several drugs are now being tested in clinical trials. Regulation of the Keap1/Nrf2/ARE pathway by small molecules which can act as Nrf2 activators could be effective for treating oxidative stress and neuroinflammation in PD. In this review, we had discussed the principal molecular mechanisms behind the neuroprotective effects of Keap1/Nrf2/ARE pathway in PD. Additionally, we also discussed the small molecules and phytochemicals that could activate the Nrf2 mediated anti-oxidant pathway for neuroprotection in PD.
Collapse
Affiliation(s)
- Amritha Chakkittukandiyil
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Deepak Vasudevan Sajini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Arjunan Karuppaiah
- Department of Pharmaceutics, PSG College of Pharmacy, Peelamedu, Coimbatore, Tamil Nadu, India
| | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.
| |
Collapse
|
13
|
Ahmed S, Panda SR, Kwatra M, Sahu BD, Naidu VGM. Perillyl Alcohol Attenuates NLRP3 Inflammasome Activation and Rescues Dopaminergic Neurons in Experimental In Vitro and In Vivo Models of Parkinson's Disease. ACS Chem Neurosci 2022; 13:53-68. [PMID: 34904823 DOI: 10.1021/acschemneuro.1c00550] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
NLRP3 activation plays a key role in the initiation and progression of a variety of neurodegenerative diseases. However, understanding the molecular mechanisms involved in the bidirectional signaling required to activate the NLRP3 inflammasomes is the key to treating several diseases. Hence, the present study aimed to investigate the role of lipopolysaccharide (LPS) and hydrogen peroxide (H2O2) in activating NLRP3 inflammasome-driven neurodegeneration and elucidated the neuroprotective role of perillyl alcohol (PA) in in vitro and in vivo models of Parkinson's disease (PD). Initial priming of microglial cells with LPS following treatment with H2O2 induced NF-κB translocation to the nucleus with a robust generation of free radicals that act as signal 2 in augmenting NLRP3 inflammasome assembly and its downstream targets. PA treatment suppresses the nuclear translocation of NF-κB, enhances PARKIN translocation into the mitochondria, and maintains cellular redox homeostasis in both mouse and human microglial cells that limit NLRP3 inflammasome activation along with processing of active caspase-1, IL-1β, and IL-18. To further correlate the in vitro study with the in vivo MPTP model, treatment with PA also inhibited the nuclear translocation of NF-κB and downregulated the NLRP3 inflammasome activation. PA administration upregulated various antioxidant enzymes' levels and restored the level of dopamine and other neurotransmitters in the striatum of the mouse brain, subsequently improving the behavioral activities. Therefore, we conclude that NLRP3 inflammasome activation required a signal from damaged mitochondria for its activation. Further pharmacological scavenging of free radicals restricts microglia activation and simultaneously supports neuronal survival via targeting the NLRP3 inflammasome pathway in PD.
Collapse
Affiliation(s)
- Sahabuddin Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, Kamrup, Assam 781101, India
| | - Samir Ranjan Panda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, Kamrup, Assam 781101, India
| | - Mohit Kwatra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, Kamrup, Assam 781101, India
| | - Bidya Dhar Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, Kamrup, Assam 781101, India
| | - VGM Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, Kamrup, Assam 781101, India
| |
Collapse
|
14
|
Wang Y, Gao L, Chen J, Li Q, Huo L, Wang Y, Wang H, Du J. Pharmacological Modulation of Nrf2/HO-1 Signaling Pathway as a Therapeutic Target of Parkinson's Disease. Front Pharmacol 2021; 12:757161. [PMID: 34887759 PMCID: PMC8650509 DOI: 10.3389/fphar.2021.757161] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022] Open
Abstract
Parkinson’s disease (PD) is a complex neurodegenerative disorder featuring both motor and nonmotor symptoms associated with a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Oxidative stress (OS) has been implicated in the pathogenesis of PD. Genetic and environmental factors can produce OS, which has been implicated as a core contributor to the initiation and progression of PD through the degeneration of dopaminergic neurons. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) orchestrates activation of multiple protective genes, including heme oxygenase-1 (HO-1), which protects cells from OS. Nrf2 has also been shown to exert anti-inflammatory effects and modulate both mitochondrial function and biogenesis. Recently, a series of studies have reported that different bioactive compounds were shown to be able to activate Nrf2/antioxidant response element (ARE) and can ameliorate PD-associated neurotoxin, both in animal models and in tissue culture. In this review, we briefly overview the sources of OS and the association between OS and the pathogenesis of PD. Then, we provided a concise overview of Nrf2/ARE pathway and delineated the role played by activation of Nrf2/HO-1 in PD. At last, we expand our discussion to the neuroprotective effects of pharmacological modulation of Nrf2/HO-1 by bioactive compounds and the potential application of Nrf2 activators for the treatment of PD. This review suggests that pharmacological modulation of Nrf2/HO-1 signaling pathway by bioactive compounds is a therapeutic target of PD.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Luyan Gao
- Department of Neurology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Qiang Li
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng, China
| | - Liang Huo
- Department of Pediatric Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanchao Wang
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng, China
| | - Hongquan Wang
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Jichen Du
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| |
Collapse
|
15
|
Nrf2 as a potential target for Parkinson's disease therapy. J Mol Med (Berl) 2021; 99:917-931. [PMID: 33844027 DOI: 10.1007/s00109-021-02071-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/28/2021] [Accepted: 03/29/2021] [Indexed: 02/08/2023]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder featuring both motor and nonmotor symptoms associated with a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Conventionally, PD treatment options have focused on dopamine replacement and provide only symptomatic relief. However, disease-modifying therapies are still unavailable. Mechanistically, genetic and environmental factors can produce oxidative stress which has been implicated as a core contributor to the initiation and progression of PD through the degeneration of dopaminergic neurons. Importantly, nuclear factor erythroid 2-related factor 2 (Nrf2) is essential for maintaining redox homeostasis by binding to the antioxidant response element which exists in the promoter regions of most genes coding for antioxidant enzymes. Furthermore, protein kinase C, mitogen-activated protein kinases, and phosphotidylinositol 3-kinase have been implicated in the regulation of Nrf2 activity during PD. Here, we review the evidence supporting the regulation of Nrf2 through Keap1-dependent and Keap1-independent mechanisms. We also address that targeting Nrf2 may provide a therapeutic option to mitigate oxidative stress-associated PD. Finally, we discuss currently known classes of small molecule activators of Nrf2, including Nrf2-activating compounds in PD.
Collapse
|
16
|
Pinocembrin-7-Methylether Protects SH-SY5Y Cells Against 6-Hydroxydopamine-Induced Neurotoxicity via Modulating Nrf2 Induction Through AKT and ERK Pathways. Neurotox Res 2021; 39:1323-1337. [PMID: 33999357 DOI: 10.1007/s12640-021-00376-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
The present study aimed to evaluate the neuroprotective effects and underlying mechanisms of pinocembrin-7-methylether (PME), a natural bioflavonoid, in 6-hydroxydopamine (6-OHDA)-induced models of Parkinson's disease in vivo and in vitro. First, we found that PME decreased apoptosis in 6-OHDA-intoxicated SH-SY5Y cells. PME also blocked several 6-OHDA-induced mitochondrial apoptotic cascades, including loss of mitochondrial membrane potential, caspase 3 and PARP activation, and a decrease in the Bcl-2/Bax ratio. Also, PME suppressed 6-OHDA-induced oxidative stress while increasing antioxidant enzymatic activity. Further investigations indicated that PME significantly enhanced nuclear accumulation of Nrf2, improved ARE promoter activity, and upregulated HO-1 and NQO1 expression levels. In addition, siRNA-mediated Nrf2 knockdown abolished PME-induced anti-oxidative and anti-apoptotic effects. Interestingly, we found that PME promoted phosphorylation of AKT and ERK, whereas pharmacological inhibition of AKT or ERK pathways diminished PME-induced Nrf2 activation and protective actions. Moreover, PME attenuated 6-OHDA-induced loss of dopaminergic neurons and ameliorated locomotor deficiency in zebrafish, supporting the neuroprotective actions of PME in vivo. In summary, we found that PME conferred neuroprotection against 6-OHDA-induced neurotoxicity in PD models in vivo and in vitro. Taken together, our findings suggest that activation of Nrf2/ARE/HO-1 signaling cascades contributes to PME-induced anti-oxidative and neuroprotective actions, which are at least partially mediated by AKT and ERK pathways.
Collapse
|
17
|
Behavior and oxidative stress parameters in rats subjected to the animal's models induced by chronic mild stress and 6-hydroxydopamine. Behav Brain Res 2021; 406:113226. [PMID: 33684423 DOI: 10.1016/j.bbr.2021.113226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022]
Abstract
Major depressive disorder (MDD) is one of the most prevalent forms of mental illness also affecting older adults. Recent evidence suggests a relationship between MDD and neurodegenerative diseases, including Parkinson's disease (PD). Individuals with PD have a predisposition to developing MDD, and both neurobiological conditions are associated with oxidative stress. Thus, we conducted this study to investigate depressive-like behavior and oxidative stress parameters using both animal models of PD and stress. Adult Wistar rats were subjected to chronic mild stress (CMS) protocol by 40 days and then it was used 6-hydroxydopamine (6-OHDA) as a model of PD, into the striatum. The experimental groups were: Control + Sham, Stress + Sham, Control+6-OHDA, and Stress+6-OHDA. Depressive like-behavior was evaluated by the forced swimming test (FST) and spontaneous locomotor activity by open-field test. Oxidative stress parameters were measured in the striatum, hippocampus, and prefrontal cortex (PFC). The results showed effects to increase immobility and decrease climbing times in the FST in Stress + Sham, Control+6-OHDA, and Stress+6-OHDA groups. The number of crossings and rearings were decreased in the Stress+6-OHDA group. The lipid peroxidation was increased in the PFC of Stress + Sham, and the hippocampus and striatum of Stress + Sham and Control+6-OHDA groups. Carbonyl protein levels increased in the PFC of Stress + Sham and striatum in Control+6-OHDA. Nitrite/Nitrate concentration was elevated in the PFC of Stress + Sham, in the hippocampus of Control+6-OHDA, the striatum of Stress + Sham, and Control+6-OHDA groups. Myeloperoxidase (MPO) activity was increased in the PFC and hippocampus of Stress + Sham and Control+6-OHDA groups. The activity of catalase decreased in the PFC of the Stress + Sham group. The activity of the superoxide dismutase (SOD) was decreased in the PFC of the Stress + Sham group, in the hippocampus of Stress + Sham and Control+6-OHDA groups, and the striatum of Control+6-OHDA group. These findings suggest that both stress and 6-OHDA induce depressive-like behavior and oxidative stress in the brain. The joining models have little evidence of the effects. Thus these findings suggest that other pathways are involved in the common point of the pathophysiology of PD and MDD.
Collapse
|
18
|
Kang TC. Nuclear Factor-Erythroid 2-Related Factor 2 (Nrf2) and Mitochondrial Dynamics/Mitophagy in Neurological Diseases. Antioxidants (Basel) 2020; 9:antiox9070617. [PMID: 32679689 PMCID: PMC7402121 DOI: 10.3390/antiox9070617] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/01/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria play an essential role in bioenergetics and respiratory functions for cell viability through numerous biochemical processes. To maintain mitochondria quality control and homeostasis, mitochondrial morphologies change rapidly in response to external insults and changes in metabolic status through fusion and fission (so called mitochondrial dynamics). Furthermore, damaged mitochondria are removed via a selective autophagosomal process, referred to as mitophagy. Although mitochondria are one of the sources of reactive oxygen species (ROS), they are themselves vulnerable to oxidative stress. Thus, endogenous antioxidant defense systems play an important role in cell survival under physiological and pathological conditions. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a redox-sensitive transcription factor that maintains redox homeostasis by regulating antioxidant-response element (ARE)-dependent transcription and the expression of antioxidant defense enzymes. Although the Nrf2 system is positively associated with mitochondrial biogenesis and mitochondrial quality control, the relationship between Nrf2 signaling and mitochondrial dynamics/mitophagy has not been sufficiently addressed in the literature. This review article describes recent clinical and experimental observations on the relationship between Nrf2 and mitochondrial dynamics/mitophagy in various neurological diseases.
Collapse
Affiliation(s)
- Tae-Cheon Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; ; Tel.: +82-33-248-2524; Fax: +82-33-248-2525
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|