1
|
Li X, Zhao Z, Ke Y, Jiang Y, Liu Y, Liu Z. Links Between Cellular Energy Metabolism and Pain Sensation. Anesth Analg 2025; 140:616-627. [PMID: 39110636 PMCID: PMC11805490 DOI: 10.1213/ane.0000000000007096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 02/09/2025]
Abstract
One of the functions of organism cells is to maintain energy homeostasis to promote metabolism and adapt to the environment. The 3 major pathways of cellular energy metabolism are glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS). Neurons, astrocytes, and microglia are crucial in allodynia, hyperalgesia, and sensitization in nociceptive pathways. This review focused on these 3 major cellular energy metabolism pathways, aiming to elucidate the relationship between neurocyte and pain sensation and present the reprogramming of energy metabolism on pain, as well as the cellular and molecular mechanism underlying various forms of pain. The clinical and preclinical drugs involved in pain treatment and molecular mechanisms via cellular energy metabolism were also discussed.
Collapse
Affiliation(s)
- Xiongjuan Li
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Zhao Zhao
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Yuwen Ke
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Yonghan Jiang
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Yuqiang Liu
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Zhiheng Liu
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| |
Collapse
|
2
|
Peterson IL, Scholpa NE, Bachtle KJ, Frye JB, Loppi SH, Thompson AD, Doyle K, Largent-Milnes TM, Schnellmann RG. Formoterol alters chemokine expression and ameliorates pain behaviors after moderate spinal cord injury in female mice. J Pharmacol Exp Ther 2025; 392:100015. [PMID: 40023611 DOI: 10.1124/jpet.124.002171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
Secondary spinal cord injury (SCI) is characterized by increased cytokines and chemokines at the site of injury that have been associated with the development of neuropathic pain. Nearly 80% of SCI patients report suffering from chronic pain, which is poorly managed with available analgesics. While treatment with the US Food and Drug Administration-approved β2-adrenergic receptor agonist formoterol improves various aspects of recovery post-SCI in vivo, its effects on cytokines, chemokines, and neuropathic pain remain unknown. Female mice were subjected to moderate (60 kilodynes [kdyn]) or severe (80 kdyn) SCI followed by daily treatment with vehicle or formoterol (0.3 mg/kg, i.p.) beginning 8 hours after injury. The expression of proinflammatory cytokines/chemokines, such as interferon gamma-induced protein 10, macrophage inflammatory protein 1a, monocyte chemoattractant protein 1, B-cell attracting chemokine 1, and nuclear factor kappa-light-chain-enhancer of activated B-cells, was increased in the injury site of vehicle-treated mice 24 hours post-SCI, which was ameliorated with formoterol treatment, regardless of injury severity. Thermal hyperalgesia and mechanical allodynia, as measured by Hargreaves infrared apparatus and von Frey filaments, respectively, were assessed prior to SCI and then weekly beginning 21 days post-injury (DPI). While all injured mice exhibited decreased withdrawal latency following thermal stimulation compared with baseline, formoterol treatment reduced this response ∼15% by 35 DPI. Vehicle-treated mice displayed significant mechanical allodynia, as evidenced by a 55% decrease in withdrawal threshold from baseline. In contrast, mice treated with formoterol maintained a consistent withdrawal time at all times tested. These data indicate that formoterol reduces inflammation post-SCI, likely contributing to mitigation of neuropathic pain and further supporting the therapeutic potential of this treatment strategy. SIGNIFICANCE STATEMENT: Chronic pain is a detrimental consequence of spinal cord injury (SCI). We show that treatment with the US Food and Drug Administration-approved drug formoterol after SCI decreases injury site proinflammatory chemo-/cytokines and alters markers of glial cell activation and infiltration. Additionally, formoterol treatment improves locomotor function and body composition, and decreases lesion volume. Finally, formoterol treatment decreased mechanical allodynia and thermal hyperalgesia post-SCI. These data are suggestive of the mechanism of formoterol-induced recovery, and further indicate its potential as a therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Ingrid L Peterson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona; Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Natalie E Scholpa
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona; Southern Arizona VA Health Care System, Tucson, Arizona.
| | - Kiara J Bachtle
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Jennifer B Frye
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Sanna H Loppi
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Austin D Thompson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Kristian Doyle
- Southern Arizona VA Health Care System, Tucson, Arizona; Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona
| | | | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona; Southern Arizona VA Health Care System, Tucson, Arizona; Department of Neuroscience, College of Medicine, University of Arizona, Tucson, Arizona; Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona; Center for Innovation in Brain Science, University of Arizona, Tucson, Arizona.
| |
Collapse
|
3
|
Jiang W, Yu W, Tan Y. Activation of GPR55 alleviates neuropathic pain and chronic inflammation. Biotechnol Appl Biochem 2025; 72:196-206. [PMID: 39219239 DOI: 10.1002/bab.2656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Neuropathic pain (NP) significantly impacts the quality of life due to its prolonged duration and lack of effective treatment. Recent findings suggest that targeting neuroinflammation is a promising approach for treating NP. G protein-coupled receptor 55 (GPR55), a member of the GPCR family, plays an important role in neuroinflammatory regulation. CID16020046, a GPR55 agonist, possesses promising anti-neuroinflammatory effects. Herein, the therapeutic effect of CID16020046 on NP was investigated in an NP rat model. The NP model was established using the unilateral sciatic nerve chronic constriction injury (CCI) assay. Both sham and CCI rats were intraperitoneally administered with 20 mg/kg CID16020046. NP was assessed using paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). First, we showed that GPR55 was downregulated in the spinal dorsal horn of CCI rats. After CCI rats were treated with CID16020046, the values of PWT and PWL were increased, indicating their effect on pain relief. The treated rats had attenuated release of inflammatory cytokines in the spinal cord, decreased spinal malondialdehyde (MDA) levels, and increased spinal glutathione peroxidase (GSH-PX) activity. Additionally, the increased levels of phosphorylated nuclear factor (NF)-κB p65 in CCI rats were significantly alleviated by CID16020046 treatment. Mechanistically, we showed that CID16020046 significantly suppressed the activation of the Janus kinase (JAK2)/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway in the spinal cord of CCI-treated rats. However, Colivelin TFA (a STAT3 agonist) abolished the effect of CID16020046 on JAK2/STAT3 activation. In conclusion, our data demonstrate that the activation of GPR55 by CID16020046 alleviates NP and neuroinflammation in CCI rats by mediating the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Weiqun Jiang
- Department of Anesthesiology, Nanchang First Hospital, Nanchang, Jiangxi, China
| | - Wenbin Yu
- Department of Anesthesiology, Nanchang First Hospital, Nanchang, Jiangxi, China
| | - Yu Tan
- Department of Anesthesiology, Nanchang First Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Pușcașu C, Andrei C, Olaru OT, Zanfirescu A. Metabolite-Sensing Receptors: Emerging Targets for Modulating Chronic Pain Pathways. Curr Issues Mol Biol 2025; 47:63. [PMID: 39852178 PMCID: PMC11763455 DOI: 10.3390/cimb47010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
Chronic pain is a debilitating condition affecting millions worldwide, often resulting from complex interactions between the nervous and immune systems. Recent advances highlight the critical role of metabolite-sensing G protein-coupled receptors (GPCRs) in various chronic pain types. These receptors link metabolic changes with cellular responses, influencing inflammatory and degenerative processes. Receptors such as free fatty acid receptor 1 (FFAR1/GPR40), free fatty acid receptor 4 (FFAR4/GPR120), free fatty acid receptor 2 (FFAR2/GPR43), and Takeda G protein-coupled receptor 5 (TGR5/GPR131/GPBAR1) are key modulators of nociceptive signaling. GPR40, activated by long-chain fatty acids, exhibits strong anti-inflammatory effects by reducing cytokine expression. Butyrate-activated GPR43 inhibits inflammatory mediators like nitric oxide synthase-2 and cyclooxygenase-2, mitigating inflammation. TGR5, activated by bile acids, regulates inflammation and cellular senescence through pathways like NF-κB and p38. These receptors are promising therapeutic targets in chronic pain, addressing the metabolic and inflammatory factors underlying nociceptive sensitization and tissue degeneration. This review explores the molecular mechanisms of metabolite-sensing receptors in chronic pain, their therapeutic potential, and challenges in clinical application. By uncovering these mechanisms, metabolite-sensing receptors could lead to safer, more effective pain management strategies.
Collapse
Affiliation(s)
| | - Corina Andrei
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (O.T.O.); (A.Z.)
| | | | | |
Collapse
|
5
|
Mishra S, Mishra Y, Kumar A. Marine-derived bioactive compounds for neuropathic pain: pharmacology and therapeutic potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03667-7. [PMID: 39797987 DOI: 10.1007/s00210-024-03667-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/22/2024] [Indexed: 01/13/2025]
Abstract
Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management. Marine organisms, including fungi, algae, cone snails, sponges, soft corals, tunicates, and fish, produce a diverse range of secondary metabolites with significant pharmacological properties. These include peptides (e.g., conopeptides, piscidin 1), non-peptides (e.g., guanidinium toxins, astaxanthin, docosahexaenoic acid, fucoidan, apigenin, fumagillin, aaptamine, flexibilide, excavatolide B, capnellenes, austrasulfones, lemnalol), and crude extracts (e.g., Spirulina platensis, Dunaliella salina, Cliothosa aurivilli). These compounds exhibit diverse mechanisms of action, such as modulating ion channels (e.g., transient receptor potential channels, voltage-gated sodium, calcium, and potassium channels, and G protein-coupled inwardly rectifying potassium channels), interacting with cell-surface receptors (e.g., nicotinic acetylcholine, NMDA, kainate, GABAB, and neurotensin receptors), inhibiting norepinephrine transporters, reducing oxidative stress, and attenuating neuroinflammation. These effects collectively contribute to alleviating nerve degeneration and symptoms of neuropathic pain, including hyperalgesia, allodynia, and associated psychomotor disturbances. Marine-derived bioactive compounds represent promising alternatives to conventional neuropathic pain treatments, to advance their development and assess their integration into neuropathic pain management strategies.
Collapse
Affiliation(s)
- Swapnil Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal, India
| | - Yogesh Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India.
| |
Collapse
|
6
|
Wen ZH, Wu ZS, Cheng HJ, Huang SY, Tang SH, Teng WN, Su FW, Chen NF, Sung CS. Intrathecal Fumagillin Alleviates Chronic Neuropathy-Induced Nociceptive Sensitization and Modulates Spinal Astrocyte-Neuronal Glycolytic and Angiogenic Proteins. Mol Neurobiol 2025; 62:246-263. [PMID: 38837104 DOI: 10.1007/s12035-024-04254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
Nociceptive sensitization is accompanied by the upregulation of glycolysis in the central nervous system in neuropathic pain. Growing evidence has demonstrated glycolysis and angiogenesis to be related to the inflammatory processes. This study investigated whether fumagillin inhibits neuropathic pain by regulating glycolysis and angiogenesis. Fumagillin was administered through an intrathecal catheter implanted in rats with chronic constriction injury (CCI) of the sciatic nerve. Nociceptive, behavioral, and immunohistochemical analyses were performed to evaluate the effects of the inhibition of spinal glycolysis-related enzymes and angiogenic factors on CCI-induced neuropathic pain. Fumagillin reduced CCI-induced thermal hyperalgesia and mechanical allodynia from postoperative days (POD) 7 to 14. The expression of angiogenic factors, vascular endothelial growth factor (VEGF) and angiopoietin 2 (ANG2), increased in the ipsilateral lumbar spinal cord dorsal horn (SCDH) following CCI. The glycolysis-related enzymes, pyruvate kinase M2 (PKM2) and lactate dehydrogenase A (LDHA) significantly increased in the ipsilateral lumbar SCDH following CCI on POD 7 and 14 compared to those in the control rats. Double immunofluorescence staining indicated that VEGF and PKM2 were predominantly expressed in the astrocytes, whereas ANG2 and LDHA were predominantly expressed in the neurons. Intrathecal infusion of fumagillin significantly reduced the expression of angiogenic factors and glycolytic enzymes upregulated by CCI. The expression of hypoxia-inducible factor-1α (HIF-1α), a crucial transcription factor that regulates angiogenesis and glycolysis, was also upregulated after CCI and inhibited by fumagillin. We concluded that intrathecal fumagillin may reduce the expression of ANG2 and LDHA in neurons and VEGF and PKM2 in the astrocytes of the SCDH, further attenuating spinal angiogenesis in neuropathy-induced nociceptive sensitization. Hence, fumagillin may play a role in the inhibition of peripheral neuropathy-induced neuropathic pain by modulating glycolysis and angiogenesis.
Collapse
Affiliation(s)
- Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804201, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Zong-Sheng Wu
- Division of Pain Management, Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
| | - Hao-Jung Cheng
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Shi-Ying Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Shih-Hsuan Tang
- Division of Pain Management, Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
| | - Wei-Nung Teng
- Division of Pain Management, Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Fu-Wei Su
- Division of Pain Management, Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Nan-Fu Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, 80284, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, 804201, Taiwan
| | - Chun-Sung Sung
- Division of Pain Management, Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan.
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, 112304, Taiwan.
| |
Collapse
|
7
|
Kodanch SM, Mukherjee S, Prabhu NB, Kabekkodu SP, Bhat SK, Rai PS. Altered mitochondrial homeostasis on bisphenol-A exposure and its association in developing polycystic ovary syndrome: A comprehensive review. Reprod Toxicol 2024; 130:108700. [PMID: 39181417 DOI: 10.1016/j.reprotox.2024.108700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous endocrinopathy that is known to be one of the most common reproductive pathologies observed in premenopausal women around the globe and is particularly complex as it affects various endocrine and reproductive metabolic pathways. Endocrine-disrupting chemicals (EDCs) are considered to be environmental toxicants as they have hazardous health effects on the functioning of the human endocrine system. Among various classes of EDCs, bisphenol A (BPA) has been under meticulous investigation due to its ability to alter the endocrine processes. As there is emerging evidence suggesting that BPA-induced mitochondrial homeostasis dysfunction in various pathophysiological conditions, this review aims to provide a detailed review of how various pathways associated with ovarian mitochondrial homeostasis are impaired on BPA exposure and its mirroring effects on the PCOS phenotype. BPA exposure might cause significant damage to the mitochondrial morphology and functions through the generation of reactive oxygen species (ROS) and simultaneously downregulates the total antioxidant capacity, thereby leading to oxidative stress. BPA disrupts the mitochondrial dynamics in human cells by altering the expressions of mitochondrial fission and fusion genes, increases the senescence marker proteins, along with significant alterations in the mTOR/AMPK pathway, upregulates the expression of autophagy mediating factors, and downregulates the autophagic suppressor. Furthermore, an increase in apoptosis of the ovarian granulosa cells indicates impaired folliculogenesis. As all these key features are associated with the pathogenesis of PCOS, this review can provide a better insight into the possible associations between BPA-induced dysregulation of mitochondrial homeostasis and PCOS.
Collapse
Affiliation(s)
- Supraja M Kodanch
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sayantani Mukherjee
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Navya B Prabhu
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shashikala K Bhat
- Department of Obstetrics and Gynaecology, Dr T M A Pai Hospital, Udupi, Karnataka 576101, India
| | - Padmalatha S Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
8
|
Liu J, Liu X, Guo L, Liu X, Gao Q, Wang E, Dong Z. PPARγ agonist alleviates calcium oxalate nephrolithiasis by regulating mitochondrial dynamics in renal tubular epithelial cell. PLoS One 2024; 19:e0310947. [PMID: 39325731 PMCID: PMC11426502 DOI: 10.1371/journal.pone.0310947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Kidney stone formation is a common disease that causes a significant threat to human health. The crystallization mechanism of calcium oxalate, the most common type of kidney stone, has been extensively researched, yet the damaging effects and mechanisms of calcium oxalate crystals on renal tubular epithelial cells remain incompletely elucidated. Regulated mitochondrial dynamics is essential for eukaryotic cells, but its role in the occurrence and progression of calcium oxalate (CaOx) nephrolithiasis is not yet understood. METHODS An animal model of calcium oxalate-related nephrolithiasis was established in adult male Sprague‒Dawley (SD) rats by continuously administering drinking water containing 1% ethylene glycol for 28 days. The impact of calcium oxalate crystals on mitochondrial dynamics and apoptosis in renal tubular epithelial cells was investigated using HK2 cells in vitro. Blood samples and bilateral kidney tissues were collected for histopathological evaluation and processed for tissue injury, inflammation, fibrosis, oxidative stress detection, and mitochondrial dynamics parameter analysis. RESULTS Calcium oxalate crystals caused higher levels of mitochondrial fission and apoptosis in renal tubular epithelial cells both in vivo and in vitro. Administration of a PPARγ agonist significantly alleviated mitochondrial fission and apoptosis in renal tubular epithelial cells, and improved renal function, accompanied by reduced levels of oxidative stress, increased antioxidant enzyme expression, alleviation of inflammation, and reduced fibrosis in vivo. CONCLUSION Our results indicated that increased mitochondrial fission in renal tubular epithelial cells is a critical component of kidney injury caused by calcium oxalate stones, leading to the accumulation of reactive oxygen species within the tissue and the subsequent initiation of apoptosis. Regulating mitochondrial dynamics represents a promising approach for calcium oxalate nephrolithiasis.
Collapse
Affiliation(s)
- Junfa Liu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xingyang Liu
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Lizhe Guo
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Xiongfei Liu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qian Gao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - E Wang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Zhitao Dong
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Zhang W, Yu S, Jiao B, Zhang C, Zhang K, Liu B, Zhang X. Vitamin D 3 Attenuates Neuropathic Pain via Suppression of Mitochondria-Associated Ferroptosis by Inhibiting PKCα/NOX4 Signaling Pathway. CNS Neurosci Ther 2024; 30:e70067. [PMID: 39328008 PMCID: PMC11427799 DOI: 10.1111/cns.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
AIMS Neuropathic pain remains a significant unmet medical challenge due to its elusive mechanisms. Recent clinical observations suggest that vitamin D (VitD) holds promise in pain relief, yet its precise mechanism of action is still unclear. This study explores the therapeutical role and potential mechanism of VitD3 in spared nerve injury (SNI)-induced neuropathic pain rat model. METHODS The analgesic effects and underlying mechanisms of VitD3 were evaluated in SNI and naïve rat models. Mechanical allodynia was assessed using the Von Frey test. Western blotting, immunofluorescence, biochemical assay, and transmission electron microscope (TEM) were employed to investigate the molecular and cellular effects of VitD3. RESULTS Ferroptosis was observed in the spinal cord following SNI. Intrathecal administration of VitD3, the active form of VitD, activated the vitamin D receptor (VDR), suppressed ferroptosis, and alleviated mechanical nociceptive behaviors. VitD3 treatment preserved spinal GABAergic interneurons, and its neuroprotective effects were eliminated by the ferroptosis inducer RSL3. Additionally, VitD3 mitigated aberrant mitochondrial morphology and oxidative metabolism in the spinal cord. Mechanistically, VitD3 inhibited SNI-induced activation of spinal PKCα/NOX4 signaling. Inhibition of PKCα/NOX4 signaling alleviated mechanical pain hypersensitivity, accompanied by reduced ferroptosis and mitochondrial dysfunction in SNI rats. Conversely, activation of PKCα/NOX4 signaling in naïve rats induced hyperalgesia, ferroptosis, loss of GABAergic interneurons, and mitochondrial dysfunction in the spinal cord, all of which were reversed by VitD3 treatment. CONCLUSIONS Our findings provide evidence that VitD3 attenuates neuropathic pain by preserving spinal GABAergic interneurons through the suppression of mitochondria-associated ferroptosis mediated by PKCα/NOX4 signaling, probably via VDR activation. VitD, alone or in combination with existing analgesics, presents an innovative therapeutic avenue for neuropathic pain.
Collapse
Affiliation(s)
- Wencui Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Shangchen Yu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Bo Jiao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Caixia Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Kaiwen Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Baowen Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Xianwei Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
10
|
Huang P, Li L, Chen Y, Li Y, Zhu D, Cui J. Mitochondrial DNA drives neuroinflammation through the cGAS-IFN signaling pathway in the spinal cord of neuropathic pain mice. Open Life Sci 2024; 19:20220872. [PMID: 38840892 PMCID: PMC11151397 DOI: 10.1515/biol-2022-0872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/17/2024] [Accepted: 04/18/2024] [Indexed: 06/07/2024] Open
Abstract
Neuroinflammation is pivotal in the development of neuropathic pain (NeP). While mitochondrial deoxyribonucleic acid (mtDNA) and cyclic GMP-AMP synthase (cGAS) are recognized for inducing inflammation in various neurological disorders, their involvement in NeP remains ambiguous. In this study, we examined: (1) the changes in mtDNA and cGAS in mice with NeP induced by chronic constriction injury (CCI) of the sciatic nerve, whether mtDNA triggers inflammation via the cGAS signaling; (2) the effects of RU.521, a cGAS antagonist, on CCI-induced nociception (allodynia and hyperalgesia) and relative inflammatory protein expression; (3) the activation of microglia and the cGAS-IFN pathway mediated by mtDNA in BV2 cell; (4) the effect of RU.521 on mtDNA-induced inflammatory response in BV2 cells. Results revealed reduced mtDNA levels in the sciatic nerve but increased levels in the spinal cord of CCI mice, along with elevated cGAS expression and inflammatory factors. RU.521 alleviated nociceptive behaviors in CCI mice, possibly by normalizing cGAS levels and suppressing inflammation. Neuron-derived mtDNA provoked cellular activation and upregulated cGAS signaling in BV2 cells. Additionally, RU.521 and DNase I effectively inhibited cGAS-induced inflammation. These findings underscore the critical role of mtDNA accumulation and mtDNA-mediated cGAS signaling in NeP development after peripheral nerve injury.
Collapse
Affiliation(s)
- Penghui Huang
- Department of Pain Medicine, First Affiliated Hospital, Army Medical University, Chongqing, 400038China
| | - Li Li
- Department of Pain Medicine, First Affiliated Hospital, Army Medical University, Chongqing, 400038China
| | - Yaohua Chen
- Department of Pain Medicine, First Affiliated Hospital, Army Medical University, Chongqing, 400038China
| | - Yuping Li
- Department of Pain Medicine, First Affiliated Hospital, Army Medical University, Chongqing, 400038China
| | - Dan Zhu
- Department of Pain Medicine, First Affiliated Hospital, Army Medical University, Chongqing, 400038China
| | - Jian Cui
- Department of Pain Medicine, First Affiliated Hospital, Army Medical University, Chongqing, 400038China
| |
Collapse
|
11
|
Yin J, Zheng X, Zhao Y, Shen X, Cheng T, Shao X, Jing X, Huang S, Lin W. Investigating the Therapeutic Effects of Ferroptosis on Myocardial Ischemia-Reperfusion Injury Using a Dual-Locking Mitochondrial Targeting Strategy. Angew Chem Int Ed Engl 2024; 63:e202402537. [PMID: 38509827 DOI: 10.1002/anie.202402537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
Research on ferroptosis in myocardial ischemia/reperfusion injury (MIRI) using mitochondrial viscosity as a nexus holds great promise for MIRI therapy. However, high-precision visualisation of mitochondrial viscosity remains a formidable task owing to the debilitating electrostatic interactions caused by damaged mitochondrial membrane potential. Herein, we propose a dual-locking mitochondria-targeting strategy that incorporates electrostatic forces and probe-protein molecular docking. Even in damaged mitochondria, stable and precise visualisation of mitochondrial viscosity in triggered and medicated MIRI was achieved owing to the sustained driving forces (e.g., pi-cation, pi-alkyl interactions, etc.) between the developed probe, CBS, and the mitochondrial membrane protein. Moreover, complemented by a western blot, we confirmed that ferrostatin-1 exerts its therapeutic effect on MIRI by improving the system xc-/GSH/GPX4 antioxidant system, confirming the therapeutic value of ferroptosis in MIRI. This study presents a novel strategy for developing robust mitochondrial probes, thereby advancing MIRI treatment.
Collapse
Affiliation(s)
- Junling Yin
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Xueying Zheng
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Yuxi Zhao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Xiaotong Shen
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Tian Cheng
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Xinyu Shao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Xinying Jing
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Shuhong Huang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| |
Collapse
|
12
|
Tong Z, Du X, Zhou Y, Jing F, Ma J, Feng Y, Lou S, Wang Q, Dong Z. Drp1-mediated mitochondrial fission promotes pulmonary fibrosis progression through the regulation of lipid metabolic reprogramming by ROS/HIF-1α. Cell Signal 2024; 117:111075. [PMID: 38311302 DOI: 10.1016/j.cellsig.2024.111075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
OBJECTIVE To confirm the mechanism of dynamic-related protein 1 (Drp1)-mediated mitochondrial fission through ROS/HIF-1α-mediated regulation of lipid metabolic reprogramming in the progression of pulmonary fibrosis (PF). METHODS A mouse model of PF was established by intratracheal instillation of bleomycin (BLM) (2.5 mg/kg). A PF cell model was constructed by stimulating MRC-5 cells with TGF-β (10 ng/mL). Pathological changes in the lung tissue and related protein levels were observed via tissue staining. The indicators related to lipid oxidation were detected by a kit, and lipid production was confirmed through oil red O staining. Inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA). RT-qPCR, Western blotting and immunofluorescence staining were used to detect the expression of genes and proteins related to the disease. We used CCK-8 and EdU staining to confirm cell proliferation, flow cytometry was used to confirm apoptosis and ROS levels, α-SMA expression was detected by immunofluorescence staining, and mitochondria were observed by MitoTracker staining. RESULTS The BLM induced lung tissue structure and alveolar wall thickening in mice. Mitochondrial fission was observed in MRC-5 cells induced by TGF-β, which led to increased cell proliferation; decreased apoptosis; increased expression of collagen, α-SMA and Drp1; and increased lipid oxidation and inflammation. Treatment with the Drp1 inhibitor mdivi-1 or transfection with si-Drp1 attenuated the induction of BLM and TGF-β. For lipid metabolism, lipid droplets were formed in BLM-induced lung tissue and in TGF-β-induced cells, fatty acid oxidation genes and lipogenesis-related genes were upregulated, ROS levels in cells were increased, and the expression of HIF-1α was upregulated. Mdivi-1 treatment reversed TGF-β induction, while H2O2 treatment or OE-HIF-1α transfection reversed the effect of mdivi-1. CONCLUSION In PF, inhibition of Drp1 can prevent mitochondrial fission in fibroblasts and regulate lipid metabolism reprogramming through ROS/HIF-1α; thus, fibroblast activation was inhibited, alleviating the progression of PF.
Collapse
Affiliation(s)
- Zhongkai Tong
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Xuekui Du
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Ying Zhou
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Fangxue Jing
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China; Health Science Center, Ningbo University, Ningbo 315211, China
| | - JiangPo Ma
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325000, China
| | - Yingying Feng
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China; Health Science Center, Ningbo University, Ningbo 315211, China
| | - Saiyun Lou
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China; Second Clinical Medicine Faculty of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiong Wang
- Department of Respiratory Infection, Zhenhai Hospital of Traditional Chinese Medicine, Ningbo 315200, China
| | - Zhaoxing Dong
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China.
| |
Collapse
|
13
|
Zhang K, Ren YQ, Xue Y, Duan D, Zhou T, Ding YZ, Li X, Gong WK, Guan JQ, Ma L. Alpha 2-adrenoceptor participates in anti-hyperalgesia by regulating metabolic demand. Front Pharmacol 2024; 15:1359319. [PMID: 38584597 PMCID: PMC10996398 DOI: 10.3389/fphar.2024.1359319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/20/2024] [Indexed: 04/09/2024] Open
Abstract
The α2-adrenoceptor agonist dexmedetomidine is a commonly used drug for sedatives in clinics and has analgesic effects; however, its mechanism of analgesia in the spine remains unclear. In this study, we systematically used behavioural and transcriptomic sequencing, pharmacological intervention, electrophysiological recording and ultrasound imaging to explore the analgesic effects of the α2-adrenoceptor and its molecular mechanism. Firstly, we found that spinal nerve injury changed the spinal transcriptome expression, and the differential genes were mainly related to calcium signalling and tissue metabolic pathways. In addition, α2-adrenoceptor mRNA expression was significantly upregulated, and α2-adrenoceptor was significantly colocalised with markers, particularly neuronal markers. Intrathecal dexmedetomidine suppressed neuropathic pain and acute inflammatory pain in a dose-dependent manner. The transcriptome results demonstrated that the analgesic effect of dexmedetomidine may be related to the modulation of neuronal metabolism. Weighted gene correlation network analysis indicated that turquoise, brown, yellow and grey modules were the most correlated with dexmedetomidine-induced analgesic effects. Bioinformatics also annotated the involvement of metabolic processes and neural plasticity. A cardiovascular-mitochondrial interaction was found, and ultrasound imaging revealed that injection of dexmedetomidine significantly enhanced spinal cord perfusion in rats with neuropathic pain, which might be regulated by pyruvate dehydrogenase kinase 4 (pdk4), cholesterol 25-hydroxylase (ch25 h) and GTP cyclohydrolase 1 (gch1). Increasing the perfusion doses of dexmedetomidine significantly suppressed the frequency and amplitude of spinal nerve ligation-induced miniature excitatory postsynaptic currents. Overall, dexmedetomidine exerts analgesic effects by restoring neuronal metabolic processes through agonism of the α2-adrenoceptor and subsequently inhibiting changes in synaptic plasticity.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Qing Ren
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Xue
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongxia Duan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tong Zhou
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying-Zhuo Ding
- Shanghai Eye Disease Prevention and Treatment Center/Shanghai Eye Hospital, Department of Pharmacy, Shanghai, China
| | - Xiang Li
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Wan-Kun Gong
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiao-Qiong Guan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Le Ma
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Qian J, Liang T, Xu Y, Liu ZP, Jing LL, Luo HB. Effect of the Novel Free Radical Scavenger 4'-Hydroxyl-2-Substituted Phenylnitronyl Nitroxide on Oxidative Stress, Mitochondrial Dysfunction and Apoptosis Induced by Cerebral Ischemia-Reperfusion in Rats. Neuroscience 2024; 540:1-11. [PMID: 38242279 DOI: 10.1016/j.neuroscience.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/21/2024]
Abstract
Mitochondrial dysfunction, which results in the overproduction of oxygen free radicals, is a crucial mechanism underlying cerebral ischemia-reperfusion injury. 4'-Hydroxyl-2-substituted phenylnitronyl nitroxide (HPN), which is an antioxidant and free radical scavenger, can effectively scavenge oxygen free radicals, suggesting its potential as a protective agent against cerebral ischemia-reperfusion injury. In this study, we investigated the effects of HPN on mitochondrial function and apoptosis following cerebral ischemia/reperfusion injury in rats. Healthy adult SD rats were chosen as the experimental subjects, and the rat ischemia/reperfusion injury model was generated using the modified Zea Longa method. The administration of HPN significantly enhanced the activity of endogenous antioxidant enzymes, such as superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT). Additionally, HPN effectively preserved the morphology and function of mitochondria, reduced the protein and gene expression of Caspase-3 and Bax, increased the protein and gene expression of Bcl-2, mitigated neuronal apoptosis, improved neurological deficits, and decreased the volume of cerebral infarction. Of interest, the protective effect on brain tissue was more evident with increasing doses of HPN. These findings indicate that HPN can serve as an effective protective agent against cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Jun Qian
- Department of Neurology, Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, PR China
| | - Tao Liang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, PR China
| | - Yu Xu
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, PR China
| | - Zhi-Peng Liu
- Department of Neurology, Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, PR China
| | - Lin-Lin Jing
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Hong-Bo Luo
- Department of Neurology, Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, PR China.
| |
Collapse
|
15
|
Lambona C, Zwergel C, Valente S, Mai A. SIRT3 Activation a Promise in Drug Development? New Insights into SIRT3 Biology and Its Implications on the Drug Discovery Process. J Med Chem 2024; 67:1662-1689. [PMID: 38261767 PMCID: PMC10859967 DOI: 10.1021/acs.jmedchem.3c01979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
Sirtuins catalyze deacetylation of lysine residues with a NAD+-dependent mechanism. In mammals, the sirtuin family is composed of seven members, divided into four subclasses that differ in substrate specificity, subcellular localization, regulation, as well as interactions with other proteins, both within and outside the epigenetic field. Recently, much interest has been growing in SIRT3, which is mainly involved in regulating mitochondrial metabolism. Moreover, SIRT3 seems to be protective in diseases such as age-related, neurodegenerative, liver, kidney, heart, and metabolic ones, as well as in cancer. In most cases, activating SIRT3 could be a promising strategy to tackle these health problems. Here, we summarize the main biological functions, substrates, and interactors of SIRT3, as well as several molecules reported in the literature that are able to modulate SIRT3 activity. Among the activators, some derive from natural products, others from library screening, and others from the classical medicinal chemistry approach.
Collapse
Affiliation(s)
- Chiara Lambona
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Clemens Zwergel
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Sergio Valente
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Pasteur
Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
16
|
Guo C, Yue Y, Wang B, Chen S, Li D, Zhen F, Liu L, Zhu H, Xie M. Anemoside B4 alleviates arthritis pain via suppressing ferroptosis-mediated inflammation. J Cell Mol Med 2024; 28:e18136. [PMID: 38334255 PMCID: PMC10853948 DOI: 10.1111/jcmm.18136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/02/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024] Open
Abstract
Chronic pain is the key manifestations of rheumatoid arthritis. Neuroinflammation in the spinal cord drives central sensitization and chronic pain. Ferroptosis has potentially important roles in the occurrence of neuroinflammation and chronic pain. In the current study, mouse model of collagen-induced arthritis was established by intradermal injection of type II collagen in complete Freund's adjuvant (CFA) solution. CFA inducement resulted in swollen paw and ankle, mechanical and spontaneous pain, and impaired motor coordination. The spinal inflammation was triggered, astrocytes were activated, and increased NLRP3-mediated inflammatory signal was found in CFA spinal cord. Oxidative stress and ferroptosis in the spinal cord were manifested. Meanwhile, enhancive spinal GSK-3β activity and abnormal phosphorylated Drp1 were observed. To investigate the potential therapeutic options for arthritic pain, mice were intraperitoneally injected with AB4 for three consecutive days. AB4 treatment reduced pain sensitivity and increased the motor coordination. In the spinal cord, AB4 treatment inhibited NLRP3 inflammasome-mediated inflammatory response, increased antioxidation, decreased mitochondrial reactive oxygen species and ferroptosis. Furthermore, AB4 decreased GSK-3β activity by binding with GSK-3β through five electrovalent bonds. Our findings indicated that AB treatment relieves arthritis pain by inhibiting GSK-3β activation, increasing antioxidant capability, reducing Drp1-mediated mitochondrial dysfunction and suppressing neuroinflammation.
Collapse
Affiliation(s)
- Chenlu Guo
- School of PharmacyHubei University of Science and TechnologyXianningChina
| | - Yuanfen Yue
- Department of ObstetricsXianning Central Hospital, First Affiliated Hospital of Hubei University of Science and TechnologyXianningChina
| | - Bojun Wang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical CollegeHubei University of Science and TechnologyXianningChina
| | - Shaohui Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical CollegeHubei University of Science and TechnologyXianningChina
| | - Dai Li
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical CollegeHubei University of Science and TechnologyXianningChina
| | - Fangshou Zhen
- Department of PharmacyMatang Hospital of Traditional Chinese MedicineXianningChina
| | - Ling Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical CollegeHubei University of Science and TechnologyXianningChina
| | - Haili Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical CollegeHubei University of Science and TechnologyXianningChina
| | - Min Xie
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical CollegeHubei University of Science and TechnologyXianningChina
| |
Collapse
|
17
|
Wang X, Zhuang Y, Lin Z, Chen S, Chen L, Huang H, Lin H, Wu S. Research hotspots and trends on neuropathic pain-related mood disorders: a bibliometric analysis from 2003 to 2023. FRONTIERS IN PAIN RESEARCH 2023; 4:1233444. [PMID: 38179224 PMCID: PMC10764508 DOI: 10.3389/fpain.2023.1233444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Neuropathic Pain (NP) is often accompanied by mood disorders, which seriously affect the quality of life of patients. This study aimed to analyze the hotspots and trends in NP-related mood disorder research using bibliometric methods and to provide valuable predictions for future research in this field. Methods Articles and review articles on NP-related mood disorders published from January 2003 to May 2023 were retrieved from the Web of Science Core Collection. We used CiteSpace to analyze publications, countries, institutions, authors, cited authors, journals, cited journals, references, cited references, and keywords. We also analyzed collaborative network maps and co-occurrence network maps. Results A total of 4,540 studies were collected for analysis. The number of publications concerning NP-related mood disorders every year shows an upward trend. The United States was a major contributor in this field. The University of Toronto was the most productive core institution. C GHELARDINI was the most prolific author, and RH DWORKIN was the most frequently cited author. PAIN was identified as the journal with the highest productivity and citation rate. The current research hotspots mainly included quality of life, efficacy, double-blind methodology, gabapentin, pregabalin, postherpetic neuralgia, and central sensitization. The frontiers in research mainly focused on the mechanisms associated with microglia activation, oxidative stress, neuroinflammation, and NP-related mood disorders. Discussion In conclusion, the present study provided insight into the current state and trends in NP-related mood disorder research over the past 20 years. Consequently, researchers will be able to identify new perspectives on potential collaborators and cooperative institutions, hot topics, and research frontiers in this field.
Collapse
Affiliation(s)
- Xiaohua Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Yueyang Zhuang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Zhigang Lin
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Shuijin Chen
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Lechun Chen
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Hongye Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Hui Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Shiye Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| |
Collapse
|
18
|
Santos JM, Wang R, Bhakta V, Driver Z, Vadim Y, Kiritoshi T, Ji G, Neugebauer V, Shen CL. Turmeric Bioactive Compounds Alleviate Spinal Nerve Ligation-Induced Neuropathic Pain by Suppressing Glial Activation and Improving Mitochondrial Function in Spinal Cord and Amygdala. Nutrients 2023; 15:4403. [PMID: 37892476 PMCID: PMC10610406 DOI: 10.3390/nu15204403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
This study examined the effects of turmeric bioactive compounds, curcumin C3 complex® (CUR) and bisdemethoxycurcumin (BDMC), on mechanical hypersensitivity and the gene expression of markers for glial activation, mitochondrial function, and oxidative stress in the spinal cord and amygdala of rats with neuropathic pain (NP). Twenty-four animals were randomly assigned to four groups: sham, spinal nerve ligation (SNL, an NP model), SNL+100 mg CUR/kg BW p.o., and SNL+50 mg BDMC/kg BW p.o. for 4 weeks. Mechanical hypersensitivity was assessed by the von Frey test (VFT) weekly. The lumbosacral section of the spinal cord and the right amygdala (central nucleus) were collected to determine the mRNA expression of genes (IBA-1, CD11b, GFAP, MFN1, DRP1, FIS1, PGC1α, PINK, Complex I, TLR4, and SOD1) utilizing qRT-PCR. Increased mechanical hypersensitivity and increased gene expression of markers for microglial activation (IBA-1 in the amygdala and CD11b in the spinal cord), astrocyte activation (GFAP in the spinal cord), mitochondrial dysfunction (PGC1α in the amygdala), and oxidative stress (TLR4 in the spinal cord and amygdala) were found in untreated SNL rats. Oral administration of CUR and BDMC significantly decreased mechanical hypersensitivity. CUR decreased CD11b and GFAP gene expression in the spinal cord. BDMC decreased IBA-1 in the spinal cord and amygdala as well as CD11b and GFAP in the spinal cord. Both CUR and BDMC reduced PGC1α gene expression in the amygdala, PINK1 gene expression in the spinal cord, and TLR4 in the spinal cord and amygdala, while they increased Complex I and SOD1 gene expression in the spinal cord. CUR and BDMC administration decreased mechanical hypersensitivity in NP by mitigating glial activation, oxidative stress, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Julianna M. Santos
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.M.S.); (R.W.)
| | - Rui Wang
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.M.S.); (R.W.)
| | - Viren Bhakta
- Department of Biochemistry, Texas Tech University, Lubbock, TX 79409, USA (Z.D.)
| | - Zarek Driver
- Department of Biochemistry, Texas Tech University, Lubbock, TX 79409, USA (Z.D.)
| | - Yakhnitsa Vadim
- Department of Pharmacology and Neurosciences, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (Y.V.); (T.K.); (G.J.); (V.N.)
| | - Takaki Kiritoshi
- Department of Pharmacology and Neurosciences, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (Y.V.); (T.K.); (G.J.); (V.N.)
| | - Guangchen Ji
- Department of Pharmacology and Neurosciences, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (Y.V.); (T.K.); (G.J.); (V.N.)
| | - Volker Neugebauer
- Department of Pharmacology and Neurosciences, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (Y.V.); (T.K.); (G.J.); (V.N.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.M.S.); (R.W.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
19
|
Scholpa NE. Role of DNA methylation during recovery from spinal cord injury with and without β 2-adrenergic receptor agonism. Exp Neurol 2023; 368:114494. [PMID: 37488045 DOI: 10.1016/j.expneurol.2023.114494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
Daily treatment with the FDA-approved β2-adrenergic receptor agonist formoterol beginning 8 h after severe spinal cord injury (SCI) induces mitochondrial biogenesis and improves recovery in mice. We observed decreased DNA methyltransferase (DNMT) expression, global DNA methylation and methylation of the mitochondrial genes PGC-1α and NDUFS1 in the injury site of formoterol-treated mice 1 DPI, but this effect was lost by 7 DPI. To investigate the role of DNA methylation on recovery post-SCI, injured mice were treated daily with formoterol or vehicle, plus the DNMT inhibitor decitabine (DAC) on days 7-9. While DAC had no apparent effect on formoterol-induced recovery, mice treated with vehicle plus DAC exhibited increased BMS scores compared to vehicle alone beginning 15 DPI, reaching a degree of functional recovery similar to that of formoterol-treated mice by 21 DPI. Furthermore, DAC treatment increased injury site mitochondrial protein expression in vehicle-treated mice to levels comparable to that of formoterol-treated mice. The effect of DNMT inhibition on pain response with and without formoterol was assessed following moderate SCI. While all injured mice not treated with DAC displayed thermal hyperalgesia by 21 DPI, mice treated with formoterol exhibited decreased thermal hyperalgesia compared to vehicle-treated mice by 35 DPI. Injured mice treated with DAC, regardless of formoterol treatment, did not demonstrate thermal hyperalgesia at any time point assessed. Although these data do not suggest enhanced formoterol-induced recovery with DNMT inhibition, our findings indicate the importance of DNA methylation post-SCI and support both DNMT inhibition and formoterol as potential therapeutic avenues.
Collapse
Affiliation(s)
- Natalie E Scholpa
- Southern Arizona VA Health Care System, Tucson, AZ, United States of America; Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States of America.
| |
Collapse
|
20
|
Sun Y, Yu F, Cao W, Zhang W, Liu W, Dai F. Betulinic acid alleviates neuropathic pain induced by chronic constriction injury of the sciatic nerve in mice. Neurosci Lett 2023; 813:137429. [PMID: 37574162 DOI: 10.1016/j.neulet.2023.137429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/22/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023]
Abstract
Neuropathic pain refers to a type of pain that arises from primary damage and dysfunction within the nervous system. Addressing this condition presents significant challenges and complexities. Betulinic acid (BA), known for its potent antioxidative and anti-inflammatory properties, has garnered extensive attention; nevertheless, the impact upon neuropathic pain induced by CCI is still uncertain. This paper explores the analgesic effects concerning BA on mice experiencing neuropathic pain due to sciatic nerve injury. Throughout the experiment, mice with CCI received oral gavage of BA at dosages of 3, 10, and 30 mg/kg for consecutively 8 days from the 7th day post-surgery. To assess their responses, behavioral tests and sciatic functional index (SFI) evaluations were conducted on zeroth, seventh, eighth, tenth, twelveth and fourteenth day post-CCI. On day 14, histopathological examinations and measurements of biochemical markers were performed. Immunofluorescence techniques were employed to detect Nrf2 and glial cell activation, while the Western blot method was utilized to evaluate Nrf2/HO-1 protein levels and pro-inflammatory cytokine expression. The results elucidated that BA significantly alleviated hyperalgesia and allodynia, demonstrating a dose-dependent enhancement in sciatic nerve function and facilitating the recovery of sciatic nerve injury. Furthermore, BA prominently augmented the entire antioxidative capacity (T-AOC) and T-SOD levels, concomitantly reducing MDA concentrations. Notably, BA activated the Nrf2/HO-1 signaling pathway, inhibited glial cell activation, and downregulation of the expression levels of pro-inflammatory cytokines, specifically, TNF-α, IL-1β, and IL-6 were observed. As such, this study provides a basis to support BA as a candidate drug for the treatment of neuropathic pain, attributing its analgesic effects to its anti-inflammatory, antioxidative, and neuroprotective properties.
Collapse
Affiliation(s)
- Yong Sun
- Department of Pain Medicine, The Affiliated People's Hospital of Jiangsu University, Jiangsu 212000, China
| | - Fei Yu
- Department of Pain Medicine, The Affiliated People's Hospital of Jiangsu University, Jiangsu 212000, China
| | - Weibiao Cao
- Department of Pain Medicine, The Affiliated People's Hospital of Jiangsu University, Jiangsu 212000, China
| | - Wei Zhang
- Department of Pain Medicine, The Affiliated People's Hospital of Jiangsu University, Jiangsu 212000, China
| | - Wu Liu
- Department of Pain Medicine, The Affiliated People's Hospital of Jiangsu University, Jiangsu 212000, China
| | - Fucheng Dai
- Department of Pain Medicine, The Affiliated People's Hospital of Jiangsu University, Jiangsu 212000, China.
| |
Collapse
|
21
|
Huan Y, Hao G, Shi Z, Liang Y, Dong Y, Quan H. The role of dynamin-related protein 1 in cerebral ischemia/hypoxia injury. Biomed Pharmacother 2023; 165:115247. [PMID: 37516018 DOI: 10.1016/j.biopha.2023.115247] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023] Open
Abstract
Mitochondrial dysfunction, especially in terms of mitochondrial dynamics, has been reported to be closely associated with neuronal outcomes and neurological impairment in cerebral ischemia/hypoxia injury. Dynamin-related protein 1 (Drp1) is a cytoplasmic GTPase that mediates mitochondrial fission and participates in neuronal cell death, calcium signaling, and oxidative stress. The neuroprotective role of Drp1 inhibition has been confirmed in several central nervous system disease models, demonstrating that targeting Drp1 may shed light on novel approaches for the treatment of cerebral ischemia/hypoxia injury. In this review, we aimed to highlight the roles of Drp1 in programmed cell death, oxidative stress, mitophagy, and mitochondrial function to provide a better understanding of mitochondrial disturbances in cerebral ischemia/hypoxia injury, and we also summarize the advances in novel chemical compounds targeting Drp1 to provide new insights into potential therapies for cerebral ischemia/hypoxia injury.
Collapse
Affiliation(s)
- Yu Huan
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Guangzhi Hao
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Zuolin Shi
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Yong Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Yushu Dong
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China.
| | - Huilin Quan
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
22
|
Ramírez-Tejero JA, Durán-González E, Martínez-Lara A, Lucena Del Amo L, Sepúlveda I, Huancas-Díaz A, Carvajal M, Cotán D. Microbiota and Mitochondrial Sex-Dependent Imbalance in Fibromyalgia: A Pilot Descriptive Study. Neurol Int 2023; 15:868-880. [PMID: 37489361 PMCID: PMC10366818 DOI: 10.3390/neurolint15030055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/26/2023] Open
Abstract
Fibromyalgia is a widespread chronic condition characterized by pain and fatigue. Among the long list of physiological disturbances linked to this syndrome, mitochondrial imbalance and oxidative stress stand out. Recently, the crosstalk between mitochondria and intestinal microbiota has caught the attention of biomedical researchers, who have found connections between this axis and several inflammatory and pain-related conditions. Hence, this pilot descriptive study focused on characterizing the mitochondrial mass/mitophagy ratio and total antioxidant capacity in PBMCs, as well as some microbiota components in feces, from a Peruvian cohort of 19 females and 7 males with FM. Through Western blotting, electrochemical oxidation, ELISA, and real-time qPCR, we determined VDAC1 and MALPLC3B protein levels; total antioxidant capacity; secretory immunoglobulin A (sIgA) levels; and Firmicutes/Bacteroidetes, Bacteroides/Prevotella, and Roseburia/Eubacterium ratios; as well as Ruminococcus spp., Pseudomonas spp., and Akkermansia muciniphila levels, respectively. We found statistically significant differences in Ruminococcus spp. and Pseudomonas spp. levels between females and males, as well as a marked polarization in mitochondrial mass in both groups. Taken together, our results point to a mitochondrial imbalance in FM patients, as well as a sex-dependent difference in intestinal microbiota composition.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marco Carvajal
- Instituto de Medicina Funcional e Integral de Perú, Lima 15073, Peru
| | - David Cotán
- Pronacera Therapeutics S.L., 41015 Sevilla, Spain
| |
Collapse
|
23
|
Li J, Wang Y, Yang R, Ma W, Yan J, Li Y, Chen G, Pan J. Pain in Huntington's disease and its potential mechanisms. Front Aging Neurosci 2023; 15:1190563. [PMID: 37484692 PMCID: PMC10357841 DOI: 10.3389/fnagi.2023.1190563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Pain is common and frequent in many neurodegenerative diseases, although it has not received much attention. In Huntington's disease (HD), pain is often ignored and under-researched because attention is more focused on motor and cognitive decline than psychiatric symptoms. In HD progression, pain symptoms are complex and involved in multiple etiologies, particularly mental issues such as apathy, anxiety and irritability. Because of psychiatric issues, HD patients rarely complain of pain, although their bodies show severe pain symptoms, ultimately resulting in insufficient awareness and lack of research. In HD, few studies have focused on pain and pain-related features. A detailed and systemic pain history is crucial to assess and explore pain pathophysiology in HD. This review provides an overview concentrating on pain-related factors in HD, including neuropathology, frequency, features, affecting factors and mechanisms. More attention and studies are still needed in this interesting field in the future.
Collapse
Affiliation(s)
- Jiajie Li
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Yan Wang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Riyun Yang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Wenjun Ma
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - JunGuo Yan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Yi Li
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Gang Chen
- Center for Basic Medical Research, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu, China
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jingying Pan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| |
Collapse
|
24
|
Bernatoniene J, Sciupokas A, Kopustinskiene DM, Petrikonis K. Novel Drug Targets and Emerging Pharmacotherapies in Neuropathic Pain. Pharmaceutics 2023; 15:1799. [PMID: 37513986 PMCID: PMC10384314 DOI: 10.3390/pharmaceutics15071799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Neuropathic pain is a debilitating condition characterized by abnormal signaling within the nervous system, resulting in persistent and often intense sensations of pain. It can arise from various causes, including traumatic nerve injury, neuropathy, and certain diseases. We present an overview of current and emerging pharmacotherapies for neuropathic pain, focusing on novel drug targets and potential therapeutic agents. Current pharmacotherapies, including tricyclic antidepressants, gabapentinoids, and serotonin norepinephrine re-uptake inhibitors, are discussed, as are emerging treatments, such as ambroxol, cannabidiol, and N-acetyl-L-cysteine. Additionally, the article highlights the need for further research in this field to identify new targets and develop more effective and targeted therapies for neuropathic pain management.
Collapse
Affiliation(s)
- Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Arunas Sciupokas
- Pain Clinic, Lithuanian University of Health Sciences Hospital Kauno Klinikos, Eivenių Str. 2, LT-50009 Kaunas, Lithuania
- Department of Neurology, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50009 Kaunas, Lithuania
| | - Dalia Marija Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Kestutis Petrikonis
- Department of Neurology, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50009 Kaunas, Lithuania
| |
Collapse
|
25
|
Qiu XT, Guo C, Ma LT, Li XN, Zhang QY, Huang FS, Zhang MM, Bai Y, Liang GB, Li YQ. Transcriptomic and proteomic profiling of the anterior cingulate cortex in neuropathic pain model rats. Front Mol Neurosci 2023; 16:1164426. [PMID: 37396788 PMCID: PMC10311218 DOI: 10.3389/fnmol.2023.1164426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Background Neuropathic pain (NP) takes a heavy toll on individual life quality, yet gaps in its molecular characterization persist and effective therapy is lacking. This study aimed to provide comprehensive knowledge by combining transcriptomic and proteomic data of molecular correlates of NP in the anterior cingulate cortex (ACC), a cortical hub responsible for affective pain processing. Methods The NP model was established by spared nerve injury (SNI) in Sprague-Dawley rats. RNA sequencing and proteomic data from the ACC tissue isolated from sham and SNI rats 2 weeks after surgery were integrated to compare their gene and protein expression profiles. Bioinformatic analyses were performed to figure out the functions and signaling pathways of the differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) enriched in. Results Transcriptomic analysis identified a total of 788 DEGs (with 49 genes upregulated) after SNI surgery, while proteomic analysis found 222 DEPs (with 89 proteins upregulated). While Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses of the DEGs suggested that most of the altered genes were involved in synaptic transmission and plasticity, bioinformatics analysis of the DEPs revealed novel critical pathways associated with autophagy, mitophagy, and peroxisome. Notably, we noticed functionally important NP-related changes in the protein that occurred in the absence of corresponding changes at the level of transcription. Venn diagram analysis of the transcriptomic and proteomic data identified 10 overlapping targets, among which only three genes (XK-related protein 4, NIPA-like domain-containing 3, and homeodomain-interacting protein kinase 3) showed concordance in the directions of change and strong correlations between mRNA and protein levels. Conclusion The present study identified novel pathways in the ACC in addition to confirming previously reported mechanisms for NP etiology, and provided novel mechanistic insights for future research on NP treatment. These findings also imply that mRNA profiling alone fails to provide a complete landscape of molecular pain in the ACC. Therefore, explorations of changes at the level of protein are necessary to understand NP processes that are not transcriptionally modulated.
Collapse
Affiliation(s)
- Xin-Tong Qiu
- Department of Anatomy, Histology and Embryology, Preclinical School of Medicine, Air Force Medical University, Xi’an, China
| | - Chen Guo
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Li-Tian Ma
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xin-Ning Li
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Qi-Yan Zhang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Fen-Sheng Huang
- Institute of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
| | - Ming-Ming Zhang
- Department of Anatomy, Histology and Embryology, Preclinical School of Medicine, Air Force Medical University, Xi’an, China
| | - Yang Bai
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Guo-Biao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology, Preclinical School of Medicine, Air Force Medical University, Xi’an, China
- Department of Geriatrics, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Department of Human Anatomy, Basic Medical College, Zunyi Medical University, Zunyi, China
- Department of Anatomy, College of Basic Medicine, Dali University, Dali, China
| |
Collapse
|
26
|
Moteshakereh SM, Nikoohemmat M, Farmani D, Khosrowabadi E, Salehi S, Haghparast A. The stress-induced antinociceptive responses to the persistent inflammatory pain involve the orexin receptors in the nucleus accumbens. Neuropeptides 2023; 98:102323. [PMID: 36736068 DOI: 10.1016/j.npep.2023.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/16/2022] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
Stress suppresses the sense of pain, a physiological phenomenon known as stress-induced analgesia (SIA). Brain orexin peptides regulate many physiological functions, including wakefulness and nociception. The contribution of the orexinergic system within the nucleus accumbens (NAc) in the modulation of antinociception induced by forced swim stress (FSS) remains unclear. The present study addressed the role of intra-accumbal orexin receptors in the antinociceptive responses induced by FSS during the persistent inflammatory pain model in the rat. Stereotaxic surgery was performed unilaterally on 106 adult male Wistar rats weighing 250-305 g. Different doses (1, 3, 10, and 30 nmol/ 0.5 μl DMSO) of orexin-1 receptor (OX1r) antagonist (SB334867) or OX2 receptor antagonist (TCS OX2 29) were administered into the NAc five minutes before exposure to FSS for a 6-min period. The formalin test was carried out using formalin injection (50 μl; 2.5%) into the rat's hind paw plantar surface, which induces biphasic pain-related responses. The first phase begins immediately after formalin infusion and takes 3-5 min. Subsequently, the late phase begins 15-20 min after formalin injection and takes 20-40 min. The findings demonstrated that intra-accumbal microinjection of SB334867 or TCS OX2 29 attenuated the FSS-induced antinociception in both phases of the formalin test, with the TCS OX2 29 showing higher potency. Moreover, the effect of TCS OX2 29 was more significant during the early phase of the formalin test. The results suggest that OX1 and OX2 receptors in the NAc might modulate the antinociceptive responses induced by the FSS.
Collapse
Affiliation(s)
| | - Mohammad Nikoohemmat
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Danial Farmani
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Khosrowabadi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sakineh Salehi
- epartment of Medicine, Ardabil Medical Sciences Branch, Islamic Azad University, Ardabil, Iran.
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Hayashi K, Yi H, Zhu X, Liu S, Gu J, Takahashi K, Kashiwagi Y, Pardo M, Kanda H, Li H, Levitt RC, Hao S. Role of Tumor Necrosis Factor Receptor 1-Reactive Oxygen Species-Caspase 11 Pathway in Neuropathic Pain Mediated by HIV gp120 With Morphine in Rats. Anesth Analg 2023; 136:789-801. [PMID: 36662639 DOI: 10.1213/ane.0000000000006335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Recent clinical research suggests that repeated use of opioid pain medications can increase neuropathic pain in people living with human immunodeficiency virus (HIV; PLWH). Therefore, it is significant to elucidate the exact mechanisms of HIV-related chronic pain. HIV infection and chronic morphine induce proinflammatory factors, such as tumor necrosis factor (TNF)α acting through tumor necrosis factor receptor I (TNFRI). HIV coat proteins and/or chronic morphine increase mitochondrial superoxide in the spinal cord dorsal horn (SCDH). Recently, emerging cytoplasmic caspase-11 is defined as a noncanonical inflammasome and can be activated by reactive oxygen species (ROS). Here, we tested our hypothesis that HIV coat glycoprotein gp120 with chronic morphine activates a TNFRI-mtROS-caspase-11 pathway in rats, which increases neuroinflammation and neuropathic pain. METHODS Neuropathic pain was induced by repeated administration of recombinant gp120 with morphine (gp120/M) in rats. Mechanical allodynia was assessed using von Frey filaments, and thermal latency using hotplate test. Protein expression of spinal TNFRI and cleaved caspase-11 was examined using western blots. The image of spinal mitochondrial superoxide was examined using MitoSox Red (mitochondrial superoxide indicator) image assay. Immunohistochemistry was used to examine the location of TNFRI and caspase-11 in the SCDH. Intrathecal administration of antisense oligodeoxynucleotide (AS-ODN) against TNFRI, caspase-11 siRNA, or a scavenger of mitochondrial superoxide was given for antinociceptive effects. Statistical tests were done using analysis of variance (1- or 2-way), or 2-tailed t test. RESULTS Intrathecal gp120/M induced mechanical allodynia and thermal hyperalgesia lasting for 3 weeks ( P < .001). Gp120/M increased the expression of spinal TNFRI, mitochondrial superoxide, and cleaved caspase-11. Immunohistochemistry showed that TNFRI and caspase-11 were mainly expressed in the neurons of the SCDH. Intrathecal administration of antisense oligonucleotides against TNFRI, Mito-Tempol (a scavenger of mitochondrial superoxide), or caspase-11 siRNA reduced mechanical allodynia and thermal hyperalgesia in the gp120/M neuropathic pain model. Spinal knockdown of TNFRI reduced MitoSox profile cell number in the SCDH; intrathecal Mito-T decreased spinal caspase-11 expression in gp120/M rats. In the cultured B35 neurons treated with TNFα, pretreatment with Mito-Tempol reduced active caspase-11 in the neurons. CONCLUSIONS These results suggest that spinal TNFRI-mtROS-caspase 11 signal pathway plays a critical role in the HIV-associated neuropathic pain state, providing a novel approach to treating chronic pain in PLWH with opioids.
Collapse
Affiliation(s)
- Kentaro Hayashi
- From the Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, Florida
- Department of Anesthesiology, Asahikawa Medical University, Ashikawa, Japan
| | - Hyun Yi
- From the Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, Florida
| | - Xun Zhu
- From the Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, Florida
- Department of Anesthesiology, the 6th Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Shue Liu
- From the Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, Florida
| | - Jun Gu
- From the Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, Florida
| | - Keiya Takahashi
- From the Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, Florida
- Department of Anesthesiology, Asahikawa Medical University, Ashikawa, Japan
| | - Yuta Kashiwagi
- From the Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, Florida
| | - Marta Pardo
- From the Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, Florida
| | - Hirotsugu Kanda
- Department of Anesthesiology, Asahikawa Medical University, Ashikawa, Japan
| | - Heng Li
- Department of Anesthesiology, the 6th Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Roy C Levitt
- From the Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, Florida
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
- John T. MacDonald Foundation, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| | - Shuanglin Hao
- From the Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
28
|
Chen J, Chen C, Wang N, Wang C, Gong Z, Du J, Lai H, Lin X, Wang W, Chang X, Aschner M, Guo Z, Wu S, Li H, Zheng F. Cobalt nanoparticles induce mitochondrial damage and β-amyloid toxicity via the generation of reactive oxygen species. Neurotoxicology 2023; 95:155-163. [PMID: 36716931 DOI: 10.1016/j.neuro.2023.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
Exposure to cobalt nanoparticles (CoNPs) has been associated with neurodegenerative disorders, while the mitochondrial-associated mechanisms that mediate their neurotoxicity have yet to be fully characterized. In this study, we reported that CoNPs exposure reduced the survival and lifespan in the nematodes, Caenorhabditis elegans (C. elegans). Moreover, exposure to CoNPs aggravated the induction of paralysis and the aggregation of β-amyloid (Aβ). These effects were accompanied by reactive oxygen species (ROS) overproduction, ATP reduction as well as mitochondrial fragmentation. Dynamin-related protein 1 (drp-1) activation and ensuing mitochondrial fragmentation have been shown to be associated with CoNPs-reduced survival. In order to address the role of mitochondrial damage and ROS production in CoNPs-induced Aβ toxicity, the mitochondrial reactive oxygen species scavenger mitoquinone (Mito Q) was used. Our results showed that Mito Q pretreatment alleviated CoNPs-induced ROS generation, rescuing mitochondrial dysfunction, thereby lessening the CoNPs-induced Aβ toxicity. Taken together, we show for the first time, that increasing of ROS and the upregulation of drp-1 lead to CoNPs-induced Aβ toxicity. Our novel findings provide in vivo evidence for the mechanisms of environmental toxicant-induced Aβ toxicity, and can afford new modalities for the prevention and treatment of CoNPs-induced neurodegeneration.
Collapse
Affiliation(s)
- Jingrong Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Cheng Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; The key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Na Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Chunyu Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Zhaohui Gong
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Jingxian Du
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Honglin Lai
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Xinpei Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; The key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Wei Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; The key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Xiangyu Chang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; The key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Zhenkun Guo
- The key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Siying Wu
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; The key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; The key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China.
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; The key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China.
| |
Collapse
|
29
|
Sung CS, Cheng HJ, Chen NF, Tang SH, Kuo HM, Sung PJ, Chen WF, Wen ZH. Antinociceptive Effects of Aaptamine, a Sponge Component, on Peripheral Neuropathy in Rats. Mar Drugs 2023; 21:md21020113. [PMID: 36827154 PMCID: PMC9963100 DOI: 10.3390/md21020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Aaptamine, a natural marine compound isolated from the sea sponge, has various biological activities, including delta-opioid agonist properties. However, the effects of aaptamine in neuropathic pain remain unclear. In the present study, we used a chronic constriction injury (CCI)-induced peripheral neuropathic rat model to explore the analgesic effects of intrathecal aaptamine administration. We also investigated cellular angiogenesis and lactate dehydrogenase A (LDHA) expression in the ipsilateral lumbar spinal cord after aaptamine administration in CCI rats by immunohistofluorescence. The results showed that aaptamine alleviates CCI-induced nociceptive sensitization, allodynia, and hyperalgesia. Moreover, aaptamine significantly downregulated CCI-induced vascular endothelial growth factor (VEGF), cluster of differentiation 31 (CD31), and LDHA expression in the spinal cord. Double immunofluorescent staining showed that the spinal VEGF and LDHA majorly expressed on astrocytes and neurons, respectively, in CCI rats and inhibited by aaptamine. Collectively, our results indicate aaptamine's potential as an analgesic agent for neuropathic pain. Furthermore, inhibition of astrocyte-derived angiogenesis and neuronal LDHA expression might be beneficial in neuropathy.
Collapse
Affiliation(s)
- Chun-Sung Sung
- Department of Anesthesiology, Division of Pain Management, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hao-Jung Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Nan-Fu Chen
- Department of Surgery, Division of Neurosurgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 802301, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Shih-Hsuan Tang
- Department of Anesthesiology, Division of Pain Management, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Hsiao-Mei Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Ping-Jyun Sung
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
- National Museum of Marine Biology and Aquarium, Pingtung 944401, Taiwan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
- Correspondence: (W.-F.C.); (Z.-H.W.)
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
- Correspondence: (W.-F.C.); (Z.-H.W.)
| |
Collapse
|
30
|
Zhang Z, Zheng P, Qi C, Cui Y, Qi Y, Xue K, Yan G, Liu J. Platycodon grandiflorus Polysaccharides Alleviate Cr(VI)-Induced Apoptosis in DF-1 Cells via ROS-Drp1 Signal Pathway. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122144. [PMID: 36556509 PMCID: PMC9788446 DOI: 10.3390/life12122144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/20/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Hexavalent chromium (Cr(VI)) is a widespread heavy metal that has been identified as a human carcinogen, and acute or chronic exposure to Cr(VI) can cause organ damage. Platycodon grandiflorus polysaccharide (PGPS) is a constituent extracted from the Chinese herb Platycodon grandiflorus, which has various pharmacological effects. Therefore, the author investigated the role of PGPSt in Cr(VI)-induced apoptosis in chicken embryo fibroblast cell lines (DF-1 cells). Firstly, this study infected DF-1 cells using Cr(VI) to set up a model for cytotoxicity and then added PGPSt. Then, the intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and apoptosis rate were evaluated. The results showed that PGPSt could inhibit Cr(VI)-induced mitochondrial damage and increase the apoptosis rate. For further exploration of the mechanism of regulation of PGPSt, the ROS-Drp1 pathway was investigated. The antioxidant N-acetyl-L-cysteine (NAC) and mitochondrial division inhibitor 1(Mdivi-1) were added, respectively. The results showed that the NAC and Mdivi-1 restored abnormal mitochondrial fission and cell apoptosis. Thus, PGPSt can alleviate Cr(VI)-induced apoptosis of DF-1 cells through the ROS-Drp1 signaling pathway, which may suggest new research ideas for developing new drugs to alleviate Cr(VI) toxicity.
Collapse
Affiliation(s)
- Zhuanglong Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Pimiao Zheng
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Changxi Qi
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Yuehui Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Yijian Qi
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Kun Xue
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Guangwei Yan
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: ; Tel.: +86-538-8246287; Fax: +86-538-8241419
| |
Collapse
|
31
|
Zhao J, Li J, Li G, Chen M. The role of mitochondria-associated membranes mediated ROS on NLRP3 inflammasome in cardiovascular diseases. Front Cardiovasc Med 2022; 9:1059576. [PMID: 36588561 PMCID: PMC9794868 DOI: 10.3389/fcvm.2022.1059576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/01/2022] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) metabolism is essential for the homeostasis of cells. Appropriate production of ROS is an important signaling molecule, but excessive ROS production can damage cells. ROS and ROS-associated proteins can act as damage associated molecular pattern molecules (DAMPs) to activate the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome in cardiovascular diseases. Previous studies have shown that there are connected sites, termed mitochondria-associated membranes (MAMs), between mitochondria and the endoplasmic reticulum. In cardiovascular disease progression, MAMs play multiple roles, the most important of which is the ability to mediate ROS generation, which further activates the NLPR3 inflammasome, exacerbating the progression of disease. In this review, the following topics will be covered: 1. Molecular structures on MAMs that can mediate ROS generation; 2. Specific mechanisms of molecule-mediated ROS generation and the molecules' roles in cardiovascular disease, 3. The effects of MAMs-mediated ROS on the NLRP3 inflammasome in cardiovascular disease. The purpose of this review is to provide a basis for subsequent clinical treatment development.
Collapse
Affiliation(s)
- Jiahao Zhao
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junli Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Guoyong Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China,Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Mao Chen
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China,Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Mao Chen
| |
Collapse
|
32
|
SIRT3-Mediated CypD-K166 Deacetylation Alleviates Neuropathic Pain by Improving Mitochondrial Dysfunction and Inhibiting Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4722647. [PMID: 36092157 PMCID: PMC9458368 DOI: 10.1155/2022/4722647] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/21/2022] [Accepted: 08/17/2022] [Indexed: 12/29/2022]
Abstract
Numerous studies have shown that mitochondrial dysfunction manifested by increased mitochondrial permeability transition pore (mPTP) opening and reactive oxygen species (ROS) level, and decreased mitochondrial membrane potential (MMP) plays an important role in the development of neuropathic pain. Sirtuin3 (SIRT3), a nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase, has been shown to inhibit mitochondrial oxidative stress. However, the role of SIRT3 in neuropathic pain is unclear. In this study, we found that the protein and mRNA levels of SIRT3 were significantly downregulated in the spinal cords of spared nerve injury- (SNI-) induced neuropathic pain mice, while overexpression of spinal SIRT3 reversed SNI-induced pain hypersensitivity. Further study showed that SIRT3 overexpression reduced the acetylation level of lysine 166 (K166) on cyclophilin D (CypD), the regulatory component of the mPTP, inhibited the mPTP opening, decreased ROS and malondialdehyde (MDA) levels, and increased MMP and manganese superoxide dismutase (MnSOD) in SNI mice. Point mutation of K166 to arginine on CypD (CypD-K166R) abrogated SNI-induced mitochondrial dysfunction and neuropathic pain in mice. Moreover, inhibiting mPTP opening by cyclosporin A (CsA) improved mitochondrial function and neuropathic pain in SNI mice. Together, these data show that SIRT3 is necessary to prevent neuropathic pain by deacetylating CypD-K166 and further improving mitochondrial dysfunction. This study may shed light on a potential drug target for the treatment of neuropathic pain.
Collapse
|
33
|
Sun H, Li X, Chen X, Xiong Y, Cao Y, Wang Z. Drp1 activates ROS/HIF-1α/EZH2 and triggers mitochondrial fragmentation to deteriorate hypercalcemia-associated neuronal injury in mouse model of chronic kidney disease. J Neuroinflammation 2022; 19:213. [PMID: 36050772 PMCID: PMC9438241 DOI: 10.1186/s12974-022-02542-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Background Chronic kidney disease (CKD), characterized as renal dysfunction, is regarded as a major public health problem which carries a high risk of cardiovascular diseases. The purpose of this study is to evaluate the functional significance of Drp1 in hypercalcemia-associated neuronal damage following CKD and the associated mechanism. Methods Initially, the CKD mouse models were established. Next, RT-qPCR and Western blot analysis were performed to measure expression of Fis1 and Drp1 in CKD. Chromatin immunoprecipitation (ChIP) assay and dual-luciferase reporter gene assay were utilized to explore the relationship among Drp1, HIF-1α, EZH2, and ROS with primary cortical neurons isolated from neonatal mice. Next, CKD mice were subjected to calcitonin treatment or manipulation with adenovirus expressing sh-Drp1, so as to explore the effects of Drp1 on hypercalcemia-induced neuronal injury in CKD. TUNEL assay and immunofluorescence staining were performed to detect apoptosis and NeuN-positive cells (neurons) in prefrontal cortical tissues of CKD mice. Results It was found that hypercalcemia could induce neuronal injury in CKD mice. An increase of Fis1 and Drp1 expression in cerebral cortex of CKD mice correlated with mitochondrial fragmentation. Calcitonin suppressed Drp1/Fis1-mediated mitochondrial fragmentation to attenuate hypercalcemia-induced neuronal injury after CKD. Additionally, Drp1 could increase EZH2 expression through the binding of HIF-1α to EZH2 promoter via elevating ROS generation. Furthermore, Drp1 knockdown inhibited hypercalcemia-induced neuronal injury in CKD while overexpression of EZH2 could reverse this effect in vivo. Conclusion Taken together, the key findings of the current study demonstrate the promotive role of Drp1 in mitochondrial fragmentation which contributes to hypercalcemia-induced neuronal injury in CKD. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02542-7.
Collapse
Affiliation(s)
- Hongming Sun
- The First Affiliated Hospital of Hainan Medical University, No. 31 Longhua Road, Haikou, 570102, Hannan, China.,Department of Neurology and Neuroscience, Okayama University School of Medicine, Okayama, 700-8558, Japan
| | - Xitong Li
- Department of Nephrology, Charité-Universitätsmedizin Berlin, Campus Mitte, 10117, Berlin, Germany
| | - Xin Chen
- Department of Nephrology, Charité-Universitätsmedizin Berlin, Campus Mitte, 10117, Berlin, Germany
| | - Yingquan Xiong
- Department of Nephrology, Charité-Universitätsmedizin Berlin, Campus Mitte, 10117, Berlin, Germany
| | - Yaochen Cao
- The First Affiliated Hospital of Hainan Medical University, No. 31 Longhua Road, Haikou, 570102, Hannan, China. .,Department of Nephrology, Charité-Universitätsmedizin Berlin, Campus Mitte, 10117, Berlin, Germany.
| | - Ziqiang Wang
- The First Affiliated Hospital of Hainan Medical University, No. 31 Longhua Road, Haikou, 570102, Hannan, China.
| |
Collapse
|
34
|
Wu J, Li X, Zhang X, Wang W, You X. What role of the cGAS-STING pathway plays in chronic pain? Front Mol Neurosci 2022; 15:963206. [PMID: 35979145 PMCID: PMC9376357 DOI: 10.3389/fnmol.2022.963206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic pain interferes with daily functioning and is frequently accompanied by depression. Currently, traditional clinic treatments do not produce satisfactory analgesic effects and frequently result in various adverse effects. Pathogen recognition receptors (PRRs) serve as innate cellular sensors of danger signals, sense invading microorganisms, and initiate innate and adaptive immune responses. Among them, cGAS-STING alerts on the presence of both exogenous and endogenous DNA in the cytoplasm, and this pathway has been closely linked to multiple diseases, including auto-inflammation, virus infection, and cancer. An increasing numbers of evidence suggest that cGAS-STING pathway involves in the chronic pain process; however, its role remains controversial. In this narrative review, we summarize the recent findings on the involvement of the cGAS-STING pathway in chronic pain, as well as several possible mechanisms underlying its activation. As a new area of research, this review is unique in considering the cGAS-STING pathway in sensory neurons and glial cells as a part of a broader understanding of pain, including potential mechanisms of inflammation, immunity, apoptosis, and autophagy. It will provide new insight into the treatment of pain in the future.
Collapse
Affiliation(s)
- Jingxiang Wu
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Li
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Xiaoxuan Zhang
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Wei Wang
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xingji You
- School of Medicine, Shanghai University, Shanghai, China
- *Correspondence: Xingji You
| |
Collapse
|
35
|
Shen CL, Wang R, Yakhnitsa V, Santos JM, Watson C, Kiritoshi T, Ji G, Hamood AN, Neugebauer V. Gingerol-Enriched Ginger Supplementation Mitigates Neuropathic Pain via Mitigating Intestinal Permeability and Neuroinflammation: Gut-Brain Connection. Front Pharmacol 2022; 13:912609. [PMID: 35873544 PMCID: PMC9305072 DOI: 10.3389/fphar.2022.912609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
Objectives: Emerging evidence suggests an important role of the gut-brain axis in the development of neuropathic pain (NP). We investigated the effects of gingerol-enriched ginger (GEG) on pain behaviors, as well as mRNA expressions of inflammation via tight junction proteins in GI tissues (colon) and brain tissues (amygdala, both left and right) in animals with NP. Methods: Seventeen male rats were randomly divided into three groups: Sham, spinal nerve ligation (SNL, pain model), and SNL+0.375% GEG (wt/wt in diet) for 4 weeks. Mechanosensitivity was assessed by von Frey filament tests and hindpaw compression tests. Emotional responsiveness was measured from evoked audible and ultrasonic vocalizations. Ongoing spontaneous pain was measured in rodent grimace tests. Intestinal permeability was assessed by the lactulose/D-mannitol ratio in urine. The mRNA expression levels of neuroinflammation (NF-κB, TNF-α) in the colon and amygdala (right and left) were determined by qRT-PCR. Data was analyzed statistically. Results: Compared to the sham group, the SNL group had significantly greater mechanosensitivity (von Frey and compression tests), emotional responsiveness (audible and ultrasonic vocalizations to innocuous and noxious mechanical stimuli), and spontaneous pain (rodent grimace tests). GEG supplementation significantly reduced mechanosensitivity, emotional responses, and spontaneous pain measures in SNL rats. GEG supplementation also tended to decrease SNL-induced intestinal permeability markers. The SNL group had increased mRNA expression of NF-κB and TNF-α in the right amygdala and colon; GEG supplementation mitigated these changes in SNL-treated rats. Conclusion: This study suggests GEG supplementation palliated a variety of pain spectrum behaviors in a preclinical NP animal model. GEG also decreased SNL-induced intestinal permeability and neuroinflammation, which may explain the behavioral effects of GEG.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Lubbock, TX, United States
- Center of Excellence for Integrative Health, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Lubbock, TX, United States
- *Correspondence: Chwan-Li Shen,
| | - Rui Wang
- Department of Pathology, Lubbock, TX, United States
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, Lubbock, TX, United States
| | | | - Carina Watson
- Department of Medical Education, Lubbock, TX, United States
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, Lubbock, TX, United States
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Lubbock, TX, United States
| | - Abdul Naji Hamood
- Department of Microbiology and Infectious Disease, Lubbock, TX, United States
| | - Volker Neugebauer
- Center of Excellence for Integrative Health, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Lubbock, TX, United States
- Department of Pharmacology and Neuroscience, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
36
|
Mammalian Sterile 20-Like Kinase 1 Mediates Neuropathic Pain Associated with Its Effects on Regulating Mitophagy in Schwann Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3458283. [PMID: 35656021 PMCID: PMC9155917 DOI: 10.1155/2022/3458283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/20/2022]
Abstract
Myelin degradation initiated by Schwann cells (SCs) after nerve injury is connected to the induction and chronicity of neuropathic pain (NP). Mitophagy, a selective clearance of damaged mitochondria via autophagy, contributes to the maintenance of normal function in SCs. Mitochondrial function and mitophagy activity are highly modulated by mammalian ste20-like kinase1 (Mst1). However, whether Mst1 can regulate mitophagy in SCs to play a role in NP remains poorly understood. In the present study, Sprague-Dawley rats were subjected to chronic constriction injury (CCI) on the sciatic nerve to induce NP. Small interfering RNA of Mst1 was applied to the injured sciatic nerve to knockdown Mst1. Behavioral tests were performed to evaluate NP, and myelin degeneration was assessed by transmission electron microscope and immunofluorescence. Autophagy and mitophagy were detected in the injured sciatic nerve and cultured SCs (RSC96 cells) by Western blot. ROS level, mitochondria membrane potential, and apoptosis were assessed in vitro via flow cytometry and Western blot. Mst1 knockdown alleviated mechanical allodynia and thermal hyperalgesia in the CCI-induced NP model and rescued myelin degeneration of the injured nerve. Meanwhile, CCI-increased levels of Parkin and p62 were reversed by Mst1 knockdown. In vitro RSC96 cells were subjected to starvation to induce mitophagy. Protein levels of mitochondrial Parkin and mitochondrial p62 significantly increased after Mst1 knockdown, while those in the cytosol diminished indicate that the translocation of Parkin and p62 from the cytosol to the mitochondria was promoted by the knockdown of Mst1. In addition, Mst1 knockdown reduced ROS level and apoptosis activity, while enhancing mitochondria membrane potential in RSC96 cells. The study showed that Mst1 knockdown alleviated CCI-induced NP, associated with enhanced Parkin recruitment to mitochondria and subsequent mitophagy degradation, thus preserving mitochondrial function and myelin integrity.
Collapse
|
37
|
Zhang LQ, Zhou YQ, Li JY, Sun J, Zhang S, Wu JY, Gao SJ, Tian XB, Mei W. 5-HT1F Receptor Agonist Ameliorates Mechanical Allodynia in Neuropathic Pain via Induction of Mitochondrial Biogenesis and Suppression of Neuroinflammation. Front Pharmacol 2022; 13:834570. [PMID: 35308244 PMCID: PMC8927783 DOI: 10.3389/fphar.2022.834570] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropathic pain is a devastating disease that affects millions of people worldwide. Serotonin (5-hydroxytryptamine, 5-HT) is involved in pain modulation. Several lines of evidence have indicated that 5-HT1F receptor agonists are potent inducers of mitochondrial biogenesis. In this study, we tested the hypothesis that 5-HT1F receptor agonists ameliorate mechanical allodynia in neuropathic pain via the induction of mitochondrial biogenesis and suppression of neuroinflammation. Male Sprague–Dawley rats were used to establish a neuropathic pain model via spared nerve injury (SNI). The paw withdrawal threshold (PWT) was used to evaluate mechanical allodynia. Real-time polymerase chain reaction was used to examine the mitochondrial DNA (mtDNA) copy number. Western blotting and immunofluorescence were used to examine the expression of target proteins. Our results showed that mitochondrial biogenesis was impaired in the spinal cord of rats with SNI. Moreover, activation of PGC-1α, the master regulator of mitochondrial biogenesis, attenuates established mechanical allodynia in rats with neuropathic pain. In addition, the neuronal 5-HT1F receptor is significantly downregulated in the spinal cord of rats with neuropathic pain. Furthermore, the selective 5-HT1F receptor agonist lasmiditan attenuated established mechanical allodynia in rats with neuropathic pain. Finally, lasmiditan (Las) treatment restored mitochondrial biogenesis and suppressed neuroinflammation in the spinal cord of rats with SNI. These results provide the first evidence that lasmiditan ameliorates mechanical allodynia in neuropathic pain by inducing mitochondrial biogenesis and suppressing neuroinflammation in the spinal cord. Inducers of mitochondrial biogenesis may be an encouraging therapeutic option for the management of neuropathic pain.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wei Mei
- *Correspondence: Wei Mei, ; Xue-Bi Tian,
| |
Collapse
|
38
|
Squillace S, Salvemini D. Nitroxidative stress in pain and opioid-induced adverse effects: therapeutic opportunities. Pain 2022; 163:205-213. [PMID: 34145168 DOI: 10.1097/j.pain.0000000000002347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Silvia Squillace
- Department of Pharmacology and Physiology, Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, United States
| | | |
Collapse
|
39
|
Komirishetty P, Areti A, Arruri VK, Sistla R, Gogoi R, Kumar A. FeTMPyP a peroxynitrite decomposition catalyst ameliorated functional and behavioral deficits in chronic constriction injury induced neuropathic pain in rats. Free Radic Res 2022; 55:1005-1017. [PMID: 34991423 DOI: 10.1080/10715762.2021.2010731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Neuropathic pain is a maladaptive pain phenotype that results from injury or damage to the somatosensory nervous system and is proposed to be linked to a cascade of events including excitotoxicity, oxidative stress, mitochondrial dysfunction, neuroinflammation and apoptosis. Oxidative/nitrosative stress is a critical link between neuroinflammation and neurodegeneration through poly (ADP) ribose polymerase (PARP) overactivation. Hence, the present study investigated the antioxidant and anti-inflammatory effects of peroxynitrite decomposition catalyst; FeTMPyP in chronic constriction injury (CCI) of sciatic nerve-induced neuropathy in rats. CCI of the sciatic nerve manifested significant deficits in behavioral, biochemical, functional parameters and was markedly reversed by administration of FeTMPyP. After 14 days of CCI induction, oxidative/nitrosative stress and inflammatory markers such as iNOS, NF-kB, TNF-α and IL-6 were elevated in sciatic nerves of CCI rats along with depleted levels of ATP and elevated levels of poly (ADP) ribose (PAR) in both sciatic nerves in ipsilateral (L4-L5) dorsal root ganglions (DRG's), suggesting over activation of PARP. Additionally, CCI resulted in aberrations in mitochondrial function as evident by decreased Mn-SOD levels and respiratory complex activities with increased mitochondrial fission protein DRP-1. These changes were reversed by treatment with FeTMPyP (1 & 3 mg/kg, p.o.). Findings of this study suggest that FeTMPyP, by virtue of its antioxidant properties, reduced both PARP over-activation and subsequent neuroinflammation resulted in protection against CCI-induced functional, behavioral and biochemical deficits.
Collapse
Affiliation(s)
- Prashanth Komirishetty
- Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.,Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Aparna Areti
- Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.,Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Vijay Kumar Arruri
- Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ramakrishna Sistla
- Pharmacology Division, Indian Institute of Chemical Technology (IICT), Hyderabad, India
| | - Ranadeep Gogoi
- National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| |
Collapse
|
40
|
Zhang KL, Li SJ, Pu XY, Wu FF, Liu H, Wang RQ, Liu BZ, Li Z, Li KF, Qian NS, Yang YL, Yuan H, Wang YY. Targeted up-regulation of Drp1 in dorsal horn attenuates neuropathic pain hypersensitivity by increasing mitochondrial fission. Redox Biol 2021; 49:102216. [PMID: 34954498 PMCID: PMC8718665 DOI: 10.1016/j.redox.2021.102216] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 01/02/2023] Open
Abstract
Mitochondria play an essential role in pathophysiology of both inflammatory and neuropathic pain (NP), but the mechanisms are not yet clear. Dynamin-related protein 1 (Drp1) is broadly expressed in the central nervous system and plays a role in the induction of mitochondrial fission process. Spared nerve injury (SNI), due to the dysfunction of the neurons within the spinal dorsal horn (SDH), is the most common NP model. We explored the neuroprotective role of Drp1 within SDH in SNI. SNI mice showed pain behavior and anxiety-like behavior, which was associated with elevation of Drp1, as well as increased density of mitochondria in SDH. Ultrastructural analysis showed SNI induced damaged mitochondria into smaller perimeter and area, tending to be circular. Characteristics of vacuole in the mitochondria further showed SNI induced the increased number of vacuole, widened vac-perimeter and vac-area. Stable overexpression of Drp1 via AAV under the control of the Drp1 promoter by intraspinal injection (Drp1 OE) attenuated abnormal gait and alleviated pain hypersensitivity of SNI mice. Mitochondrial ultrastructure analysis showed that the increased density of mitochondria induced by SNI was recovered by Drp1 OE which, however, did not change mitochondrial morphology and vacuole parameters within SDH. Contrary to Drp1 OE, down-regulation of Drp1 in the SDH by AAV-Drp1 shRNA (Drp1 RNAi) did not alter painful behavior induced by SNI. Ultrastructural analysis showed the treatment by combination of SNI and Drp1 RNAi (SNI + Drp1 RNAi) amplified the damages of mitochondria with the decreased distribution density, increased perimeter and area, as well as larger circularity tending to be more circular. Vacuole data showed SNI + Drp1 RNAi increased vacuole density, perimeter and area within the SDH mitochondria. Our results illustrate that mitochondria within the SDH are sensitive to NP, and targeted mitochondrial Drp1 overexpression attenuates pain hypersensitivity. Drp1 offers a novel therapeutic target for pain treatment.
Collapse
Affiliation(s)
- Kun-Long Zhang
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China; Department of Rehabilitation Medicine, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Shu-Jiao Li
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xue-Yin Pu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Fei-Fei Wu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Hui Liu
- Department of Human Anatomy, Yan-An University, Yan'an, 716000, China
| | - Rui-Qing Wang
- Department of Human Anatomy, Yan-An University, Yan'an, 716000, China
| | - Bo-Zhi Liu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ze Li
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Kai-Feng Li
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Nian-Song Qian
- Department of Oncology, First Medical Center, The General Hospital of the People's Liberation Army, Beijing, 100000, China
| | - Yan-Ling Yang
- Department of Liver and Gallbladder Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Hua Yuan
- Department of Rehabilitation Medicine, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Ya-Yun Wang
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China; State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
41
|
The therapeutic effect of hesperetin on doxorubicin-induced testicular toxicity: Potential roles of the mechanistic target of rapamycin kinase (mTOR) and dynamin-related protein 1 (DRP1). Toxicol Appl Pharmacol 2021; 435:115833. [PMID: 34933056 DOI: 10.1016/j.taap.2021.115833] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022]
Abstract
Clinical utilization of doxorubicin (DOX), which is a commonly used chemotherapeutic, is restricted due to toxic effects on various tissues. Using hesperetin (HST), an antioxidant used in Chinese traditional medicine protects testis against DOX-induced toxicity although the molecular mechanisms are not well-known. The study was aimed to examine the possible role of the mechanistic target of rapamycin kinase (mTOR) and dynamin 1-like dynamin-related protein 1 (DRP1) in the therapeutic effects of HST on the DOX-induced testicular toxicity. Rats were divided into Control, DOX, DOX + HST, and HST groups (n = 7). Single-dose DOX (15 mg/kg) was administered intraperitoneally and HST (50 mg/kg) was administered by oral gavage every other day for 28 days. Total antioxidant status (TAS), histopathological evaluations, immunohistochemistry, and gene expression level detection analyses were performed. Histopathologically, DOX-induced testicular damage was ameliorated by HST treatment. DOX reduced testicular TAS levels and increased oxidative stress markers, 8-Hydroxy-deoxyguanosine (8-OHdG), and 4-Hydroxynonenal (4-HNE). Also, upregulated mTOR and DRP1 expressions with DOX exposure were decreased after HST treatment in the testis (p < 0.05). On the other hand, DOX-administration downregulated miR-150-5p and miR-181b-2-3p miRNAs, targeting mTOR and mRNA levels of beclin 1 (BECN1) and autophagy-related 5 (ATG5), autophagic markers. Furthermore, these levels were nearly similar to control testis samples in the DOX + HST group (p < 0.05). The study demonstrated that HST may have a therapeutic effect on DOX-induced testicular toxicity by removing reactive oxygen species (ROS) and by modulating the mTOR and DRP1 expressions, which have a critical role in regulating the balance of generation/elimination of ROS.
Collapse
|
42
|
The Protective Effect of Bergamot Polyphenolic Fraction (BPF) on Chemotherapy-Induced Neuropathic Pain. Pharmaceuticals (Basel) 2021; 14:ph14100975. [PMID: 34681199 PMCID: PMC8540578 DOI: 10.3390/ph14100975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 12/14/2022] Open
Abstract
Paclitaxel is a chemotherapeutic drug used for cancer treatment. Chemotherapy-induced peripheral neuropathy (CIPN) is a common major dose-limiting side effect of many chemotherapeutic agents, including paclitaxel. CIPN is accompanied by mechanical and thermal hypersensitivity that resolves within weeks, months, or years after drug termination. To date, there is no available preventive strategy or effective treatment for CIPN due to the fact that its etiology has not been fully explained. It is clear that free radicals are implicated in many neurodegenerative diseases and recent studies have shown the important role of oxidative stress in development of CIPN. Here, we observed how, in rats, the administration of a natural antioxidant such as the bergamot polyphenolic extract (BPF), can play a crucial role in reducing CIPN. Paclitaxel administration induced mechanical allodynia and thermal hyperalgesia, which began to manifest on day seven, and reached its lowest levels on day fifteen. Paclitaxel-induced neuropathic pain was associated with nitration of proteins in the spinal cord including MnSOD, glutamine synthetase, and glutamate transporter GLT-1. This study showed that the use of BPF, probably by inhibiting the nitration of crucial proteins involved in oxidative stress, improved paclitaxel-induced pain behaviors relieving mechanical allodynia, thermal hyperalgesia, thus preventing the development of chemotherapy-induced neuropathic pain.
Collapse
|
43
|
Ammonium Glycyrrhizinate Prevents Apoptosis and Mitochondrial Dysfunction Induced by High Glucose in SH-SY5Y Cell Line and Counteracts Neuropathic Pain in Streptozotocin-Induced Diabetic Mice. Biomedicines 2021; 9:biomedicines9060608. [PMID: 34073550 PMCID: PMC8227813 DOI: 10.3390/biomedicines9060608] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/17/2021] [Accepted: 05/23/2021] [Indexed: 01/25/2023] Open
Abstract
Glycyrrhiza glabra, commonly known as liquorice, contains several bioactive compounds such as flavonoids, sterols, triterpene, and saponins; among which, glycyrrhizic acid, an oleanane-type saponin, is the most abundant component in liquorice root. Diabetic peripheral neuropathy is one of the major complications of diabetes mellitus, leading to painful condition as neuropathic pain. The pathogenetic mechanism of diabetic peripheral neuropathy is very complex, and its understanding could lead to a more suitable therapeutic strategy. In this work, we analyzed the effects of ammonium glycyrrhizinate, a derivate salt of glycyrrhizic acid, on an in vitro system, neuroblastoma cells line SH-SY5Y, and we observed that ammonium glycyrrhizinate was able to prevent cytotoxic effect and mitochondrial fragmentation after high-glucose administration. In an in vivo experiment, we found that a short-repeated treatment with ammonium glycyrrhizinate was able to attenuate neuropathic hyperalgesia in streptozotocin-induced diabetic mice. In conclusion, our results showed that ammonium glycyrrhizinate could ameliorate diabetic peripheral neuropathy, counteracting both in vitro and in vivo effects induced by high glucose, and might represent a complementary medicine for the clinical management of diabetic peripheral neuropathy.
Collapse
|
44
|
Yapa NMB, Lisnyak V, Reljic B, Ryan MT. Mitochondrial dynamics in health and disease. FEBS Lett 2021; 595:1184-1204. [PMID: 33742459 DOI: 10.1002/1873-3468.14077] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022]
Abstract
In animals, mitochondria are mainly organised into an interconnected tubular network extending across the cell along a cytoskeletal scaffold. Mitochondrial fission and fusion, as well as distribution along cytoskeletal tracks, are counterbalancing mechanisms acting in concert to maintain a mitochondrial network tuned to cellular function. Balanced mitochondrial dynamics permits quality control of the network including biogenesis and turnover, and distribution of mitochondrial DNA, and is linked to metabolic status. Cellular and organismal health relies on a delicate balance between fission and fusion, and large rearrangements in the mitochondrial network can be seen in response to cellular insults and disease. Indeed, dysfunction in the major components of the fission and fusion machineries including dynamin-related protein 1 (DRP1), mitofusins 1 and 2 (MFN1, MFN2) and optic atrophy protein 1 (OPA1) and ensuing imbalance of mitochondrial dynamics can lead to neurodegenerative disease. Altered mitochondrial dynamics is also seen in more common diseases. In this review, the machinery involved in mitochondrial dynamics and their dysfunction in disease will be discussed.
Collapse
Affiliation(s)
- Nethmi M B Yapa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic, Australia
| | - Valerie Lisnyak
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic, Australia
| | - Boris Reljic
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic, Australia
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic, Australia
| |
Collapse
|
45
|
Lee BH, Kang J, Kim HY, Gwak YS. The Roles of Superoxide on At-Level Spinal Cord Injury Pain in Rats. Int J Mol Sci 2021; 22:ijms22052672. [PMID: 33800907 PMCID: PMC7961837 DOI: 10.3390/ijms22052672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 01/05/2023] Open
Abstract
Background: In the present study, we examined superoxide-mediated excitatory nociceptive transmission on at-level neuropathic pain following spinal thoracic 10 contusion injury (SCI) in male Sprague Dawley rats. Methods: Mechanical sensitivity at body trunk, neuronal firing activity, and expression of superoxide marker/ionotropic glutamate receptors (iGluRs)/CamKII were measured in the T7/8 dorsal horn, respectively. Results: Topical treatment of superoxide donor t-BOOH (0.4 mg/kg) increased neuronal firing rates and pCamKII expression in the naïve group, whereas superoxide scavenger Tempol (1 mg/kg) and non-specific ROS scavenger PBN (3 mg/kg) decreased firing rates in the SCI group (* p < 0.05). SCI showed increases of iGluRs-mediated neuronal firing rates and pCamKII expression (* p < 0.05); however, t-BOOH treatment did not show significant changes in the naïve group. The mechanical sensitivity at the body trunk in the SCI group (6.2 ± 0.5) was attenuated by CamKII inhibitor KN-93 (50 μg, 3.9 ± 0.4) or Tempol (1 mg, 4 ± 0.4) treatment (* p < 0.05). In addition, the level of superoxide marker Dhet showed significant increase in SCI rats compared to the sham group (11.7 ± 1.7 vs. 6.6 ± 1.5, * p < 0.05). Conclusions: Superoxide and the pCamKII pathway contribute to chronic at-level neuropathic pain without involvement of iGluRs following SCI.
Collapse
Affiliation(s)
- Bong Hyo Lee
- Department of Acupuncture, Moxibustion and Acupoint, College of Korean Medicine, Daegu Haany University, Daegu 42158, Korea;
- Research Center for Herbal Convergence on Liver Disease, Daegu Haany University, Daegu 42158, Korea;
| | - Jonghoon Kang
- Department of Biology, Valdosta State University, Valdosta, GA 31698, USA;
| | - Hee Young Kim
- Research Center for Herbal Convergence on Liver Disease, Daegu Haany University, Daegu 42158, Korea;
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu 42158, Korea
| | - Young S. Gwak
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu 42158, Korea
- Correspondence: ; Tel.: +82-949-824-7222
| |
Collapse
|