1
|
Sakai Y, Hattori J, Morikawa Y, Matsumura T, Jimbo S, Suenami K, Takayama T, Nagai A, Michiue T, Ikari A, Matsunaga T. α-Pyrrolidinooctanophenone facilitates activation of human microglial cells via ROS/STAT3-dependent pathway. Forensic Toxicol 2025; 43:142-154. [PMID: 39652148 PMCID: PMC11782452 DOI: 10.1007/s11419-024-00708-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/24/2024] [Indexed: 01/31/2025]
Abstract
PURPOSE Pyrrolidinophenone derivatives (PPs) are amphetamine-like designer drugs containing a pyrrolidine ring, and their adverse effects resemble those of methamphetamine (METH). Microglial activation has been recently suggested as a key event in eliciting the adverse effects against dysfunction of the central nervous system. The aim of this study is to clarify the mechanisms of microglial activation induced by PPs. METHODS We employed the human microglial cell line HMC3 to assess microglial activation induced by PPs and evaluated the capacities for proliferation and interleukin-6 (IL-6) production that are characteristic features of the activation events. RESULTS The WST-1 assay indicated that viability of HMC3 cells was increased by treatment with sublethal concentrations (5-20 µM) of α-pyrrolidinooctanophenone (α-POP), a highly lipophilic PP, whereas it was decreased by treatment with concentrations above 40 µM. Treatment with sublethal α-POP concentrations up-regulated the expression and secretion of IL-6. Additionally, α-POP-induced increase in cell viability was restored by pretreating with N-acetyl-L-cysteine, a reactive oxygen species (ROS) scavenger, and stattic, an inhibitor of signal transducer and activator of transcription 3 (STAT3), respectively, suggesting that activation of the ROS/STAT3 pathway is involved in the α-POP-induced activation of HMC3 cells. The increases in cell viability were also observed in HMC3 cells treated with other α-POP derivatives and METH. CONCLUSIONS These results suggest that enhanced productions of ROS and IL-6 are also involved in microglial activation by drug treatment and that HMC3 cell-based system is available to evaluate accurately the microglial activation induced by abused drugs.
Collapse
Affiliation(s)
- Yuji Sakai
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan.
| | - Junta Hattori
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu, 502-8585, Japan
| | - Yoshifumi Morikawa
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Toshihiro Matsumura
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu, 502-8585, Japan
| | - Shunsuke Jimbo
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Koichi Suenami
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Tomohiro Takayama
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Atsushi Nagai
- Department of Legal Medicine, Graduate School of Medicine, Gifu University, Gifu, 501-1194, Japan
| | - Tomomi Michiue
- Department of Legal Medicine, Graduate School of Medicine, Gifu University, Gifu, 501-1194, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu, 502-8585, Japan
| |
Collapse
|
2
|
Noruzi M, Behmadi H, Sabzevari O, Foroumadi A, Ghahremani MH, Pourahmad J, Hassani S, Baeeri M, Gholami M, Ghahremanian A, Seyfi S, Taghizadeh G, Sharifzadeh M. Liraglutide alleviated alpha-pyrrolidinovalerophenone (α-PVP) induced cognitive deficits in rats by modifying brain mitochondrial impairment. Eur J Pharmacol 2024; 978:176776. [PMID: 38936451 DOI: 10.1016/j.ejphar.2024.176776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
The use of NPS compounds is increasing, and impairment in spatial learning and memory is a growing concern. Alpha-pyrrolidinovalerophenone (α-PVP) consumption, as a commonly used NPS, can impair spatial learning and memory via the brain mitochondrial dysfunction mechanism. Liraglutide isone of the most well-known Glucagon-Like Peptide 1 (GLP-1) agonists that is used as an anti-diabetic and anti-obesity drug. According to current research, Liraglutide likely ameliorates cognitive impairment in neurodegenerative conditions and substance use disorders. Hence, the purpose of this study is examining the effect of Liraglutide on α-PVP-induced spatial learning and memory problems due to brain mitochondrial dysfunction. Wistar rats (8 in each group) received α-PVP (20 mg/kg/d for 10 consecutive days, intraperitoneally (I.P.)). Then, Liraglutide was administered at 47 and 94 μg/kg/d, I.P., for 4 weeks following the α-PVP administration. The Morris Water Maze (MWM) task evaluated spatial learning and memory 24 h after Liraglutide treatment. Bedside, brain mitochondrial activity parameters, including reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP), cytochrome c release, mitochondrial outer membrane damage and swelling, and brain ADP/ATP ratio, were studied. Our results showed that Liraglutide ameliorated α-PVP-induced spatial learning and memory impairments through alleviating brain mitochondrial dysfunction (which is indicated by increasing ROS formation, collapsed MMP, mitochondrial outer membrane damage, cytochrome c release, mitochondrial swelling, and increased brain ADP/ATP ratio). This study could be used as a starting point for future studies about the possible role of Liraglutide in ameliorating mitochondrial dysfunction leading to substance use disorder- induced cognitive impairment.
Collapse
Affiliation(s)
- Marzieh Noruzi
- School of Pharmacy, Semnan University of Medical Sciences, Semnan, Iran
| | - Homayoon Behmadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Sabzevari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, and Toxicology & Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalal Pourahmad
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholami
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, and Toxicology & Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhosein Ghahremanian
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Drug and Poision Information Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Seyfi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Ghorban Taghizadeh
- Rehabilitation Research Center, Department of Occupational Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Sakai Y, Egawa D, Hattori J, Morikawa Y, Suenami K, Takayama T, Nagai A, Michiue T, Ikari A, Matsunaga T. α-Pyrrolidinononanophenone derivatives induce differentiated SH-SY5Y neuroblastoma cell apoptosis via reduction of antioxidant capacity: Involvement of NO depletion and inactivation of Nrf2/HO1 signaling pathway. Neurotoxicology 2024; 100:3-15. [PMID: 38040126 DOI: 10.1016/j.neuro.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/12/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
α-Pyrrolidinononanophenone (α-PNP) derivatives are known to be one of the hazardous new psychoactive substances due to the most extended hydrocarbon chains of any pyrrolidinophenones on the illicit drug market. Our previous report showed that 4'-iodo-α-PNP (I-α-PNP) is the most potent cytotoxic compound among α-PNP derivatives and induces apoptosis due to mitochondrial dysfunction and suppression of nitric oxide (NO) production in differentiated human neuronal SH-SY5Y cells. In this study, to clarify the detailed action mechanisms by I-α-PNP, we investigated the mechanism of reactive oxygen species (ROS) -dependent apoptosis by I-α-PNP in differentiated SH-SY5Y with a focus on the antioxidant activities. Treatment with I-α-PNP elicits overproduction of ROS such as H2O2, hydroxyl radical, and 4-hydroxy-2-nonenal, and pretreatment with antioxidant N-acetyl-L-cysteine is attenuated the SH-SY5Y cells apoptosis by I-α-PNP. These results suggested that the overproduction of ROS is related to SH-SY5Y cell apoptosis by I-α-PNP. In addition, I-α-PNP markedly decreased antioxidant capacity in differentiated cells than in undifferentiated cells and inhibited the upregulation of hemeoxygenase 1 (HO1) and glutathione peroxidase 4 (GPX4) expression caused by induction of differentiation. Furthermore, the treatment with I-α-PNP increased the nuclear expression level of BTB Domain And CNC Homolog 1 (Bach1), a transcriptional repressor of Nrf2, only in differentiated cells, suggesting that the marked decrease in antioxidant capacity in differentiated cells was due to suppression of Nrf2/HO1 signaling by Bach1. Additionally, pretreatment with an NO donor suppresses the I-α-PNP-evoked ROS overproduction, HO1 down-regulation, increased nuclear Bach1 expression and reduced antioxidant activity in the differentiated cells. These findings suggest that the ROS-dependent apoptosis by I-α-PNP in differentiated cells is attributed to the inactivation of the Nrf2/HO1 signaling pathway triggered by NO depletion.
Collapse
Affiliation(s)
- Yuji Sakai
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501, Japan.
| | - Daisuke Egawa
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu 502-8585, Japan
| | - Junta Hattori
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu 502-8585, Japan
| | - Yoshifumi Morikawa
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501, Japan
| | - Koichi Suenami
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501, Japan
| | - Tomohiro Takayama
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501, Japan
| | - Atsushi Nagai
- Department of Legal Medicine, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan
| | - Tomomi Michiue
- Department of Legal Medicine, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu 502-8585, Japan
| |
Collapse
|