1
|
Buldain J, Vitorino R, Lima T, Avella I, Zuazo Ó, Martínez-Freiría F. Intraspecific venom variation in the Iberian asp viper (Vipera aspis zinnikeri) across natural and intensive agricultural habitats. J Proteomics 2025; 310:105337. [PMID: 39448027 DOI: 10.1016/j.jprot.2024.105337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Snake venom composition varies at different levels. To date, comparative venom studies have seldom taken into account the role of habitat type in the occurrence of snake venom variation. Here we investigated the presence of venom variation across different populations of the Iberian asp viper (Vipera aspis zinnikeri) inhabiting two contrasting habitats: natural vs. intensive agricultural. We used shotgun proteomics to describe the protein composition of the venoms of six adults from two distinct localities. Furthermore, to test whether local conditions and habitat can alter venom composition in this taxon, we compared the SDS-PAGE profiles of 40 adult venoms from six populations, three in natural habitats and three in intensive agricultural environments. The venoms were composed of 21 toxin families, of which five (CTL, PLA2, VEGF, svSP, and svMP) comprised 69-82 % of each proteome. The relative abundances of toxin families varied considerably at inter- and intra-population levels. Linear regression performed on non-metric multidimensional scaling values showed a significant effect of locality of origin and habitat type on the differences detected between individual SDS-PAGE venom profiles. Our results suggest the presence of regional variation in V. a. zinnikeri venom, potentially reinforcing the role of local pressures in shaping snake venom composition. SIGNIFICANCE: This work provides the first proteomic characterization of the venom of the Iberian asp viper, Vipera aspis zinnikeri, obtained by means of shotgun proteomics. The statistical analysis of 40 individual SDS-PAGE venom profiles highlights that venom variation in this taxon can be associated with geographical origin and habitat type of the area where each viper was collected. Our results suggest the presence of regional variation in V. a. zinnikeri venom, reinforcing the role that local pressures may play as drivers of snake venom variation.
Collapse
Affiliation(s)
- Jon Buldain
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal.
| | - Rui Vitorino
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tânia Lima
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ignazio Avella
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Óscar Zuazo
- Calle La Puebla 1, Santo Domingo de la Calzada, 26250, Spain
| | - Fernando Martínez-Freiría
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal.
| |
Collapse
|
2
|
Kempson K, Chowdhury A, Violette A, Fourmy R, Soria R, Fry BG. Age Is Just a Number: Ontogenetic Conservation in Activation of Blood Clotting Factors VII, X, and XII by Caucasus Blunt-Nosed Viper ( Macrovipera lebetina obtusa) Venoms. Toxins (Basel) 2024; 16:520. [PMID: 39728778 PMCID: PMC11728708 DOI: 10.3390/toxins16120520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
This study examined the pathophysiological effects of venoms from neonate and adult specimens of the viperid snake Macrovipera lebetina obtusa, focusing on their ability to activate various blood clotting factors in human plasma. All venoms exhibited strong procoagulant properties. In concentration-response tests, the clotting potency of the neonate venoms fell within the range of their parents' maximum clotting velocities and areas under the curve. Intriguingly, females were more potent than males within each age group, but this requires a larger sample size to confirm. Antivenom neutralization efficacy was equipotent across age groups. The venoms potently activated Factor X (FX) robustly, consistent with previous knowledge of this genus. For the first time, the ability to activate Factors VII (FVII) and XII (FXII) was identified in this genus, with FXII exhibiting particularly strong activation. The study found no significant ontogenetic variation in procoagulant venom potency on human plasma, convergent with the Daboia genus, the other large-bodied lineage within the Palearctic viperid clade. However, the activation of FXII and FVII reveals previously undocumented pathways in the procoagulant activity of these venoms, contributing to the broader understanding of venom evolution and its clinical impacts. These findings have implications for venom biodiscovery and the development of antivenoms, highlighting the complexity of clotting factor activation beyond traditional investigations that have myopically focused upon FX and prothrombin pathways, thereby underscoring the importance of exploring additional clotting factors.
Collapse
Affiliation(s)
- Katrina Kempson
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (K.K.); (A.C.)
- Biomedical Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Abhinandan Chowdhury
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (K.K.); (A.C.)
| | - Aude Violette
- Alphabiotoxine Laboratory Sprl, Barberie 15, 7911 Montroeul-au-bois, Belgium; (A.V.); (R.F.)
| | - Rudy Fourmy
- Alphabiotoxine Laboratory Sprl, Barberie 15, 7911 Montroeul-au-bois, Belgium; (A.V.); (R.F.)
| | | | - Bryan G. Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (K.K.); (A.C.)
| |
Collapse
|
3
|
Qiao Z, Jones L, Bourke LA, Seneci L, Chowdhury A, Violette A, Fourmy R, Soria R, Aldridge M, Fry BG. Tiny but Mighty: Vipera ammodytes meridionalis (Eastern Long-Nosed Viper) Ontogenetic Venom Variations in Procoagulant Potency and the Impact on Antivenom Efficacies. Toxins (Basel) 2024; 16:396. [PMID: 39330854 PMCID: PMC11436208 DOI: 10.3390/toxins16090396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
The Eastern Long-Nosed Viper (Vipera ammodytes meridionalis) is considered one of the most venomous snakes in Europe. However, it is unknown whether ontogenetic variation in venom effects occurs in this subspecies and how this may impact antivenom efficacy. In this study, we compared the procoagulant activities of V. a. meridionalis venom on human plasma between neonate and adult venom phenotypes. We also examined the efficacy of three antivenoms-Viperfav, ViperaTAb, and Inoserp Europe-across our neonate and adult venom samples. While both neonate and adult V. a. meridionalis venoms produced procoagulant effects, the effects produced by neonate venom were more potent. Consistent with this, neonate venom was a stronger activator of blood-clotting zymogens, converting them into their active forms, with a rank order of Factor X >> Factor VII > Factor XII. Conversely, the less potent adult venom had a rank order of FXII marginally more activated than Factor VII, and both much more so than Factor X. This adds to the growing body of evidence that activation of factors besides FII (prothrombin) and FX are significant variables in reptile venom-induced coagulopathy. Although all three examined antivenoms displayed effective neutralization of both neonate and adult V. a. meridionalis venoms, they generally showed higher efficacy on adult venom than on neonate venom. The ranking of antivenom efficacy against neonate venom, from the most effective to the least effective, were Viperfav, Inoserp Europe, ViperaTAb; for adult venom, the ranking was Inoserp Europe, Viperfav, ViperaTAb. Our data reveal ontogenetic variation in V. a meridionalis, but this difference may not be of clinical concern as antivenom was effective at neutralizing both adult and neonate venom phenotypes. Regardless, our results highlight a previously undocumented ontogenetic shift, likely driven by the documented difference in prey preference observed for this species across age classes.
Collapse
Affiliation(s)
- Zichen Qiao
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Lee Jones
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Lachlan A. Bourke
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Lorenzo Seneci
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Abhinandan Chowdhury
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Aude Violette
- Alphabiotoxine Laboratory Sprl, Barberie 15, 7911 Montroeul-au-Bois, Belgium; (A.V.); (R.F.)
| | - Rudy Fourmy
- Alphabiotoxine Laboratory Sprl, Barberie 15, 7911 Montroeul-au-Bois, Belgium; (A.V.); (R.F.)
| | - Raul Soria
- Inosan Biopharma, 28108 Alcobendas, Madrid, Spain;
| | | | - Bryan G. Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| |
Collapse
|
4
|
Damm M, Karış M, Petras D, Nalbantsoy A, Göçmen B, Süssmuth RD. Venomics and Peptidomics of Palearctic Vipers: A Clade-Wide Analysis of Seven Taxa of the Genera Vipera, Montivipera, Macrovipera, and Daboia across Türkiye. J Proteome Res 2024; 23:3524-3541. [PMID: 38980134 PMCID: PMC11301686 DOI: 10.1021/acs.jproteome.4c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/21/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Snake venom variations are a crucial factor to understand the consequences of snakebite envenoming worldwide, and therefore it is important to know about toxin composition alterations between taxa. Palearctic vipers of the genera Vipera, Montivipera, Macrovipera, and Daboia have high medical impacts across the Old World. One hotspot for their occurrence and diversity is Türkiye, located on the border between continents, but many of their venoms remain still understudied. Here, we present the venom compositions of seven Turkish viper taxa. By complementary mass spectrometry-based bottom-up and top-down workflows, the venom profiles were investigated on proteomics and peptidomics level. This study includes the first venom descriptions of Vipera berus barani, Vipera darevskii, Montivipera bulgardaghica albizona, and Montivipera xanthina, as well as the first snake venomics profiles of Turkish Macrovipera lebetinus obtusa, and Daboia palaestinae, including an in-depth reanalysis of M. bulgardaghica bulgardaghica venom. Additionally, we identified the modular consensus sequence pEXW(PZ)1-2P(EI)/(KV)PPLE for bradykinin-potentiating peptides in viper venoms. For better insights into variations and potential impacts of medical significance, the venoms were compared against other Palearctic viper proteomes, including the first genus-wide Montivipera venom comparison. This will help the risk assessment of snakebite envenoming by these vipers and aid in predicting the venoms' pathophysiology and clinical treatments.
Collapse
Affiliation(s)
- Maik Damm
- Institut
für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
- LOEWE-Centre
for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Institute
for Insect Biotechnology, Justus-Liebig
University Giessen, Heinrich-Buff-Ring
26-32, 35392 Gießen, Germany
| | - Mert Karış
- Program
of Laboratory Technology, Department of Chemistry and Chemical Process
Technologies, Acıgöl Vocational School of Technical Sciences, Nevşehir Hacı Bektaş Veli University, Acıgöl, 50140 Nevşehir, Türkiye
| | - Daniel Petras
- Department
of Biochemistry, University of California
Riverside, 169 Aberdeen
Dr, Riverside, California 92507, United States
- Interfaculty
Institute of Microbiology and Infection Medicine, University of Tuebingen, Auf der Morgenstelle 24, 72076 Tuebingen, Germany
| | - Ayse Nalbantsoy
- Department
of Bioengineering, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Bayram Göçmen
- Zoology
Section, Department of Biology, Faculty of Science, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Roderich D. Süssmuth
- Institut
für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
5
|
Dashevsky D, Harris RJ, Zdenek CN, Benard-Valle M, Alagón A, Portes-Junior JA, Tanaka-Azevedo AM, Grego KF, Sant'Anna SS, Frank N, Fry BG. Red-on-Yellow Queen: Bio-Layer Interferometry Reveals Functional Diversity Within Micrurus Venoms and Toxin Resistance in Prey Species. J Mol Evol 2024; 92:317-328. [PMID: 38814340 PMCID: PMC11168994 DOI: 10.1007/s00239-024-10176-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/03/2024] [Indexed: 05/31/2024]
Abstract
Snakes in the family Elapidae largely produce venoms rich in three-finger toxins (3FTx) that bind to the α 1 subunit of nicotinic acetylcholine receptors (nAChRs), impeding ion channel activity. These neurotoxins immobilize the prey by disrupting muscle contraction. Coral snakes of the genus Micrurus are specialist predators who produce many 3FTx, making them an interesting system for examining the coevolution of these toxins and their targets in prey animals. We used a bio-layer interferometry technique to measure the binding interaction between 15 Micrurus venoms and 12 taxon-specific mimotopes designed to resemble the orthosteric binding region of the muscular nAChR subunit. We found that Micrurus venoms vary greatly in their potency on this assay and that this variation follows phylogenetic patterns rather than previously reported patterns of venom composition. The long-tailed Micrurus tend to have greater binding to nAChR orthosteric sites than their short-tailed relatives and we conclude this is the likely ancestral state. The repeated loss of this activity may be due to the evolution of 3FTx that bind to other regions of the nAChR. We also observed variations in the potency of the venoms depending on the taxon of the target mimotope. Rather than a pattern of prey-specificity, we found that mimotopes modeled after snake nAChRs are less susceptible to Micrurus venoms and that this resistance is partly due to a characteristic tryptophan → serine mutation within the orthosteric site in all snake mimotopes. This resistance may be part of a Red Queen arms race between coral snakes and their prey.
Collapse
Affiliation(s)
- Daniel Dashevsky
- Australian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia.
| | - Richard J Harris
- Venom Evolution Lab, School of the Environment, The University of Queensland, Saint Lucia, QLD, 4072, Australia
- Australian Institute of Marine Science, Cape Cleveland, QLD, 4810, Australia
| | - Christina N Zdenek
- Celine Frere Group, School of the Environment, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| | - Melisa Benard-Valle
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Region Hovedstaden, Denmark
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico
| | - José A Portes-Junior
- Laboratório de Coleções Zoológicas, Instituto Butantan, São Paulo, São Paulo, 05503-900, Brazil
| | - Anita M Tanaka-Azevedo
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, São Paulo, 05503-900, Brazil
| | - Kathleen F Grego
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, São Paulo, 05503-900, Brazil
| | - Sávio S Sant'Anna
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, São Paulo, 05503-900, Brazil
| | - Nathaniel Frank
- MToxins Venom Lab, 717 Oregon Street, Oshkosh, WI, 54902, USA
| | - Bryan G Fry
- Venom Evolution Lab, School of the Environment, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| |
Collapse
|
6
|
Schulte L, Damm M, Avella I, Uhrig L, Erkoc P, Schiffmann S, Fürst R, Timm T, Lochnit G, Vilcinskas A, Lüddecke T. Venomics of the milos viper ( Macrovipera schweizeri) unveils patterns of venom composition and exochemistry across blunt-nosed viper venoms. Front Mol Biosci 2023; 10:1254058. [PMID: 37719269 PMCID: PMC10500195 DOI: 10.3389/fmolb.2023.1254058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction: Snakebite is a neglected tropical disease and a globally important driver of death and morbidity. Vipers of the genus Macrovipera (Viperidae: Viperinae) are among the snakes of higher medical importance in the Old World. Despite the medical relevance of Macrovipera venoms, the knowledge regarding them is heterogeneously distributed with virtually all works conducted so far focusing on subspecies of Macrovipera lebetinus, while other species within the genus are largely overlooked. Here we present the first proteomic evaluation of the venom from the Greek endemic Milos viper (Macrovipera schweizeri). In line with clinical symptoms typically elicited by Macrovipera envenomations, Milos viper venom primarily comprises coagulotoxic and cytotoxic protein families, such as metalloproteinases (svMP) and serine proteases (svSP). Methods: We conducted comparative bioactivity assays on venoms from M. schweizeri and the M. lebetinus subspecies M. lebetinus cernovi, M. lebetinus obtusa, and M. lebetinus turanica, and showed that they all exhibit similarities in levels of cytotoxicity proteolytic activity, and inhibition of prokaryotic growth. Lastly, we compared Macrovipera venom profiles by 1D-SDS-PAGE and RP-HPLC, as well as our proteomic data with previously published Macrovipera venom proteomes. Results and discussion: The analyzes performed to reveal that a general venom profile seems to be conserved across blunt-nosed vipers, and that, M. schweizeri envenomations, similarly to those caused by other blunt-nosed vipers, are able to cause significant tissue damage. The present work represents an important starting point for the development of comparative studies across the full taxonomic range of the genus Macrovipera and can potentially help optimize the treatment of envenomations caused by M. schweizeri.
Collapse
Affiliation(s)
- Lennart Schulte
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, Germany
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | - Maik Damm
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | - Ignazio Avella
- CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO Associated Laboratory, University Port, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- CIBIO, BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Vairão, Portugal
| | - Lilien Uhrig
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Pelin Erkoc
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Frankfurt, Germany
| | - Susanne Schiffmann
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
| | - Robert Fürst
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Frankfurt, Germany
| | - Thomas Timm
- Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Günter Lochnit
- Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, Germany
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | - Tim Lüddecke
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| |
Collapse
|
7
|
Jones L, Waite C, Neri-Castro E, Fry BG. Comparative Analysis of Alpha-1 Orthosteric-Site Binding by a Clade of Central American Pit Vipers (Genera Atropoides, Cerrophidion, Metlapilcoatlus, and Porthidium). Toxins (Basel) 2023; 15:487. [PMID: 37624244 PMCID: PMC10467085 DOI: 10.3390/toxins15080487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023] Open
Abstract
The distribution and relative potency of post-synaptic neurotoxic activity within Crotalinae venoms has been the subject of less investigation in comparison with Elapidae snake venoms. No previous studies have investigated post-synaptic neurotoxic activity within the Atropoides, Metlapilcoatlus, Cerrophidion, and Porthidium clade. Given the specificity of neurotoxins to relevant prey types, we aimed to uncover any activity present within this clade of snakes that may have been overlooked due to lower potency upon humans and thus not appearing as a clinical feature. Using biolayer interferometry, we assessed the relative binding of crude venoms to amphibian, lizard, bird, rodent and human α-1 nAChR orthosteric sites. We report potent alpha-1 orthosteric site binding in venoms from Atropoides picadoi, Metlapilcoatlus occiduus, M. olmec, M. mexicanus, M. nummifer. Lower levels of binding, but still notable, were evident for Cerrophidion godmani, C. tzotzilorum and C. wilsoni venoms. No activity was observed for Porthidium venoms, which is consistent with significant alpha-1 orthosteric site neurotoxicity being a trait that was amplified in the last common ancestor of Atropoides/Cerrophidion/Metlapilcoatlus subsequent to the split by Porthidium. We also observed potent taxon-selective activity, with strong selection for non-mammalian targets (amphibian, lizard, and bird). As these are poorly studied snakes, much of what is known about them is from clinical reports. The lack of affinity towards mammalian targets may explain the knowledge gap in neurotoxic activity within these species, since symptoms would not appear in bite reports. This study reports novel venom activity, which was previously unreported, indicating toxins that bind to post-synaptic receptors may be more widespread in pit vipers than previously considered. While these effects appear to not be clinically significant due to lineage-specific effects, they are of significant evolutionary novelty and of biodiscovery interest. This work sets the stage for future research directions, such as the use of in vitro and in vivo models to determine whether the alpha-1 orthosteric site binding observed within this study confers neurotoxic venom activity.
Collapse
Affiliation(s)
- Lee Jones
- Venom Evolution Laboratory, School of the Environment, University of Queensland, St Lucia, Queensland 4072, Australia;
| | - Callum Waite
- Venom Evolution Laboratory, School of the Environment, University of Queensland, St Lucia, Queensland 4072, Australia;
| | - Edgar Neri-Castro
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, Gómez Palacio 35010, Dgo., Mexico;
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, Cuernavaca 62210, Mor., Mexico
| | - Bryan G. Fry
- Venom Evolution Laboratory, School of the Environment, University of Queensland, St Lucia, Queensland 4072, Australia;
| |
Collapse
|
8
|
Dehghani R, Monzavi SM, Mehrpour O, Shirazi FM, Hassanian-Moghaddam H, Keyler DE, Wüster W, Westerström A, Warrell DA. Medically important snakes and snakebite envenoming in Iran. Toxicon 2023; 230:107149. [PMID: 37187227 DOI: 10.1016/j.toxicon.2023.107149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
Snakebite is a common health condition in Iran with a diverse snake fauna, especially in tropical southern and mountainous western areas of the country with plethora of snake species. The list of medically important snakes, circumstances and effects of their bite, and necessary medical care require critical appraisal and should be updated regularly. This study aims to review and map the distributions of medically important snake species of Iran, re-evaluate their taxonomy, review their venomics, describe the clinical effects of envenoming, and discuss medical management and treatment, including the use of antivenom. Nearly 350 published articles and 26 textbooks with information on venomous and mildly venomous snake species and snakebites of Iran, were reviewed, many in Persian (Farsi) language, making them relatively inaccessible to an international readership. This has resulted in a revised updated list of Iran's medically important snake species, with taxonomic revisions of some, compilation of their morphological features, remapping of their geographical distributions, and description of species-specific clinical effects of envenoming. Moreover, the antivenom manufactured in Iran is discussed, together with treatment protocols that have been developed for the hospital management of envenomed patients.
Collapse
Affiliation(s)
- Ruhollah Dehghani
- Department of Environmental Health, Kashan University of Medical Sciences, Kashan, Iran; Social Determinants of Health Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mostafa Monzavi
- Medical Toxicology Center, Mashhad University of Medical Sciences, Mashhad, Iran; Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Mehrpour
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran; Rocky Mountain Poison and Drug Center, Denver Health and Hospital Authority, Denver, CO, USA.
| | - Farshad M Shirazi
- Arizona Poison and Drug Information Center, University of Arizona, Tucson, AZ, USA
| | - Hossein Hassanian-Moghaddam
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Clinical Toxicology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Daniel E Keyler
- Department of Experimental & Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Wolfgang Wüster
- Molecular Ecology and Evolution at Bangor, School of Natural Sciences, Bangor University, Bangor, UK
| | | | - David A Warrell
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|