1
|
Lamour G, Malo M, Crépin R, Pelta J, Labdi S, Campillo C. Dynamically Mapping the Topography and Stiffness of the Leading Edge of Migrating Cells Using AFM in Fast-QI Mode. ACS Biomater Sci Eng 2024; 10:1364-1378. [PMID: 38330438 DOI: 10.1021/acsbiomaterials.3c01254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Cell migration profoundly influences cellular function, often resulting in adverse effects in various pathologies including cancer metastasis. Directly assessing and quantifying the nanoscale dynamics of living cell structure and mechanics has remained a challenge. At the forefront of cell movement, the flat actin modules─the lamellipodium and the lamellum─interact to propel cell migration. The lamellipodium extends from the lamellum and undergoes rapid changes within seconds, making measurement of its stiffness a persistent hurdle. In this study, we introduce the fast-quantitative imaging (fast-QI) mode, demonstrating its capability to simultaneously map both the lamellipodium and the lamellum with enhanced spatiotemporal resolution compared with the classic quantitative imaging (QI) mode. Specifically, our findings reveal nanoscale stiffness gradients in the lamellipodium at the leading edge, where it appears to be slightly thinner and significantly softer than the lamellum. Additionally, we illustrate the fast-QI mode's accuracy in generating maps of height and effective stiffness through a streamlined and efficient processing of force-distance curves. These results underscore the potential of the fast-QI mode for investigating the role of motile cell structures in mechanosensing.
Collapse
Affiliation(s)
- Guillaume Lamour
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Michel Malo
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Raphaël Crépin
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Juan Pelta
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Sid Labdi
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Clément Campillo
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| |
Collapse
|
2
|
Ozdil B, Calik-Kocaturk D, Altunayar-Unsalan C, Acikgoz E, Oltulu F, Gorgulu V, Uysal A, Oktem G, Unsalan O, Guler G, Aktug H. Differences and similarities in biophysical and biological characteristics between U87 MG glioblastoma and astrocyte cells. Histochem Cell Biol 2024; 161:43-57. [PMID: 37700206 DOI: 10.1007/s00418-023-02234-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 09/14/2023]
Abstract
Current cancer studies focus on molecular-targeting diagnostics and interactions with surroundings; however, there are still gaps in characterization based on topological differences and elemental composition. Glioblastoma (GBM cells; GBMCs) is an astrocytic aggressive brain tumor. At the molecular level, GBMCs and astrocytes may differ, and cell elemental/topological analysis is critical for identifying potential new cancer targets. Here, we used U87 MG cells for GBMCS. U87 MG cell lines, which are frequently used in glioblastoma research, are an important tool for studying the various features and underlying mechanisms of this aggressive brain tumor. For the first time, atomic force microscopy (AFM), scanning electron microscopy (SEM) accompanied by energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) are used to report the topology and chemistry of cancer (U87 MG) and healthy (SVG p12) cells. In addition, F-actin staining and cytoskeleton-based gene expression analyses were performed. The degree of gene expression for genes related to the cytoskeleton was similar; however, the intensity of F-actin, anisotropy values, and invasion-related genes were different. Morphologically, GBMCs were longer and narrower while astrocytes were shorter and more disseminated based on AFM. Furthermore, the roughness values of these cells differed slightly between the two call types. In contrast to the rougher astrocyte surfaces in the lamellipodial area, SEM-EDS analysis showed that elongated GBMCs displayed filopodial protrusions. Our investigation provides considerable further insight into rapid cancer cell characterization in terms of a combinatorial spectroscopic and microscopic approach.
Collapse
Affiliation(s)
- Berrin Ozdil
- Department of Histology and Embryology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Suleyman Demirel University, 32260, Isparta, Turkey
| | | | - Cisem Altunayar-Unsalan
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, 35100, Bornova, Izmir, Turkey.
| | - Eda Acikgoz
- Department of Histology and Embryology, Faculty of Medicine, Van Yüzüncü Yıl University, 65080, Van, Turkey
| | - Fatih Oltulu
- Department of Histology and Embryology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey.
| | - Volkan Gorgulu
- Department of Histology and Embryology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey
| | - Aysegul Uysal
- Department of Histology and Embryology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey
| | - Gulperi Oktem
- Department of Histology and Embryology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey
| | - Ozan Unsalan
- Department of Physics, Faculty of Science, Ege University, 35100, Izmir, Turkey
| | - Gunnur Guler
- Department of Physics, Biophysics Laboratory, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Huseyin Aktug
- Department of Histology and Embryology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey
| |
Collapse
|
3
|
Olusanya TO, Calabrese G, Fatouros DG, Tsibouklis J, Smith JR. Liposome formulations of o-carborane for the boron neutron capture therapy of cancer. Biophys Chem 2019; 247:25-33. [DOI: 10.1016/j.bpc.2019.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 01/06/2023]
|
4
|
Smith JR, Olusanya TOB, Lamprou DA. Characterization of drug delivery vehicles using atomic force microscopy: current status. Expert Opin Drug Deliv 2018; 15:1211-1221. [PMID: 30417712 DOI: 10.1080/17425247.2018.1546693] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The field of nanomedicine, utilizing nano-sized vehicles (nanoparticles and nanofibers) for targeted local drug delivery, has a promising future. This is dependent on the ability to analyze the chemical and physical properties of these drug carriers at the nanoscale and hence atomic force microscopy (AFM), a high-resolution imaging and local force-measurement technique, is ideally suited. AREAS COVERED Following a brief introduction to the technique, the review describes how AFM has been used in selected publications from 2015 to 2018 to characterize nanoparticles and nanofibers as drug delivery vehicles. These sections are ordered into areas of increasing AFM complexity: imaging/particle sizing, surface roughness/quantitative analysis of images, and analysis of force curves (to extract nanoindentation and adhesion data). EXPERT OPINION AFM imaging/sizing is used extensively for the characterization of nanoparticle and nanofiber drug delivery vehicles, with surface roughness and nanomechanical/adhesion data acquisition being less common. The field is progressing into combining AFM with other techniques, notably SEM, ToF-SIMS, Raman, Confocal, and UV. Current limitations include a 50 nm resolution limit of nanoparticles imaged within live cells and AFM tip-induced activation of cytoskeleton proteins. Following drug release real-time with AFM-spectroscopic techniques and studying drug interactions on cell receptors appear to be on the horizon.
Collapse
Affiliation(s)
- James R Smith
- a School of Pharmacy and Biomedical Sciences , University of Portsmouth , Portsmouth , UK
| | - Temidayo O B Olusanya
- b Department of Pharmaceutics, Faculty of Applied Sciences , University of Sunderland , Sunderland , UK
| | | |
Collapse
|