1
|
Nica MA, Anuța V, Nicolae CA, Popa L, Ghica MV, Cocoș FI, Dinu-Pîrvu CE. Exploring Deep Eutectic Solvents as Pharmaceutical Excipients: Enhancing the Solubility of Ibuprofen and Mefenamic Acid. Pharmaceuticals (Basel) 2024; 17:1316. [PMID: 39458957 PMCID: PMC11510164 DOI: 10.3390/ph17101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Objectives: The study explores the potential of various deep eutectic solvents (DESs) to serve as drug delivery systems and pharmaceutical excipients. The research focuses on two primary objectives: evaluating the ability of the selected DES systems to enhance the solubility of two poorly water-soluble model drugs (IBU and MFA), and evaluating their physicochemical properties, including density, viscosity, flow behavior, surface tension, thermal stability, and water dilution effects, to determine their suitability for pharmaceutical applications. Methods: A range of DES systems containing pharmaceutically acceptable constituents was explored, encompassing organic acid-based, sugar- and sugar alcohol-based, and hydrophobic systems, as well as menthol (MNT)-based DES systems with common pharmaceutical excipients. MNT-based DESs exhibited the most significant solubility enhancements. Results: IBU solubility reached 379.69 mg/g in MNT: PEG 400 (1:1) and 356.3 mg/g in MNT:oleic acid (1:1), while MFA solubility peaked at 17.07 mg/g in MNT:Miglyol 812®N (1:1). In contrast, solubility in hydrophilic DES systems was significantly lower, with choline chloride: glycerol (1:2) and arginine: glycolic acid (1:8) showing the best results. While demonstrating lower solubility compared to the MNT-based systems, sugar-based DESs exhibited increased tunability via water and glycerol addition both in terms of solubility and physicochemical properties, such as viscosity and surface tension. Conclusions: Our study introduces novel DES systems, expanding the repertoire of pharmaceutically acceptable DES formulations and opening new avenues for the rational design of tailored solvent systems to overcome solubility challenges and enhance drug delivery.
Collapse
Affiliation(s)
- Mihaela-Alexandra Nica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Cristian Andi Nicolae
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania;
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Florentina-Iuliana Cocoș
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| |
Collapse
|
2
|
Mashaqbeh H, Obaidat RM, Alsmadi MM. Solvent-free method for masking the bitter taste of azithromycin dihydrate using supercritical fluid technology. Drug Dev Ind Pharm 2024; 50:102-111. [PMID: 38180038 DOI: 10.1080/03639045.2023.2298892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
INTRODUCTION AND PURPOSE The unpleasant extremely bitter taste of the orally administered broad-spectrum antibiotic azithromycin decreases patient compliance, especially in pediatrics. This issue can be overcome by decreasing drug interaction with the tasting buds using insoluble polymers at salivary pH (6.8 - 7.4), like the cationic polymer Eudragit EPO. Supercritical fluid technology is a green synthesis method for preparing pharmaceutical preparations that replace organic solvents with safe supercritical CO2. This study aimed to mask the bitter taste of azithromycin using the supercritical fluid method and a pH-sensitive Eudragit EPO polymer. METHODS A foaming process was investigated for preparing a formulation (TEST), which comprises treating the polymer with supercritical carbon dioxide (CO2) fluid to prepare a taste-masked dosage form without employing organic solvents or flavors. RESULTS The use of the supercritical technique at 40 °C and 10 MPa for 2 h allowed the manufacturing of solvent-free polymeric foam with azithromycin dispersions; the average calculated percentage of apparent volume change was 62.5 ± 5.9% with an average pore diameter of 34.879 Å. The formulated sample showed low drug release in simulated salivary fluid while keeping its crystalline nature. Moreover, clinical studies on healthy subjects showed that the formula successfully masked azithromycin's bitter taste. CONCLUSIONS Overall, it has been shown herein that the supercritical fluid technology foaming method is promising in masking the bitter taste of bitter ingredients.
Collapse
Affiliation(s)
- Hadeia Mashaqbeh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Rana M Obaidat
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The University of Jordan, Amman, Jordan
| | - Mo'tasem M Alsmadi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
- Nanotechnology Institute, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
3
|
Khattak MA, Iqbal Z, Nasir F, Neau SH, Khan SI, Hidayatullah T, Pervez S, Sakhi M, Zainab SR, Gohar S, Alasmari F, Rahman A, Maryam GE, Tahir A. Tamoxifen-Loaded Eudragit Nanoparticles: Quality by Design Approach for Optimization of Nanoparticles as Delivery System. Pharmaceutics 2023; 15:2373. [PMID: 37896131 PMCID: PMC10609841 DOI: 10.3390/pharmaceutics15102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Nanoparticles have numerous applications as drug carriers in drug delivery. The aim of the study was to produce tamoxifen nanoparticles with a defined size and higher encapsulation for efficient tissue uptake with controlled drug release. The quality by design approach was utilized to produce tamoxifen-loaded Eudragit nanoparticles by identifying the significant process variables using the nanoprecipitation method. The process variables (amount of drug, polymer, and surfactant) were altered to analyze the influence on particle size (PS), % encapsulation efficiency (EE). The results showed that the drug and polymer individually as well as collectively have an impact on PS, while the surfactant has no impact on the PS. The %EE was influenced by the surfactant individually and in interaction with the drug. The linear regression model was endorsed to fit the data showing high R2 values (PS, 0.9146, %EE, 0.9070) and low p values (PS, 0.0004, EE, 0.0005). The PS and EE were confirmed to be 178 nm and 90%, respectively. The nanoparticles were of spherical shape, as confirmed by SEM and TEM. The FTIR confirmed the absence of any incompatibility among the ingredients. The TGA confirmed that the NPs were thermally stable. The in vitro release predicted that the drug release followed Higuchi model.
Collapse
Affiliation(s)
- Muzna Ali Khattak
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; (M.A.K.); (T.H.); (S.P.); (S.R.Z.); (S.G.); (A.R.); (G.e.M.); (A.T.)
- Department of Pharmacy, Cecos University of IT and Emerging Sciences, Peshawar 25000, Pakistan
| | - Zafar Iqbal
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar 25000, Pakistan;
| | - Fazli Nasir
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; (M.A.K.); (T.H.); (S.P.); (S.R.Z.); (S.G.); (A.R.); (G.e.M.); (A.T.)
| | - Steven H. Neau
- Philadelphia College of Pharmacy, University of Sciences, Philadelphia, PA 19104, USA;
| | - Sumaira Irum Khan
- Pharmacy Department, Faculty of Health and Medical Sciences, Mirpur University of Science and Technology, New Mirpur City 10250, Pakistan;
| | - Talaya Hidayatullah
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; (M.A.K.); (T.H.); (S.P.); (S.R.Z.); (S.G.); (A.R.); (G.e.M.); (A.T.)
| | - Sadia Pervez
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; (M.A.K.); (T.H.); (S.P.); (S.R.Z.); (S.G.); (A.R.); (G.e.M.); (A.T.)
| | - Mirina Sakhi
- Department of Pharmacy, University of Swabi, Swabi 23430, Pakistan;
| | - Syeda Rabqa Zainab
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; (M.A.K.); (T.H.); (S.P.); (S.R.Z.); (S.G.); (A.R.); (G.e.M.); (A.T.)
| | - Shazma Gohar
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; (M.A.K.); (T.H.); (S.P.); (S.R.Z.); (S.G.); (A.R.); (G.e.M.); (A.T.)
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11362, Saudi Arabia;
| | - Altafur Rahman
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; (M.A.K.); (T.H.); (S.P.); (S.R.Z.); (S.G.); (A.R.); (G.e.M.); (A.T.)
| | - Gul e Maryam
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; (M.A.K.); (T.H.); (S.P.); (S.R.Z.); (S.G.); (A.R.); (G.e.M.); (A.T.)
| | - Arbab Tahir
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; (M.A.K.); (T.H.); (S.P.); (S.R.Z.); (S.G.); (A.R.); (G.e.M.); (A.T.)
| |
Collapse
|
4
|
Vishvakarma V, Kaur M, Nagpal M, Arora S. Role of Nanotechnology in Taste Masking: Recent Updates. Curr Drug Res Rev 2023; 15:1-14. [PMID: 35619251 DOI: 10.2174/2589977514666220526091259] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/02/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022]
Abstract
One of the important parameters in the case of dosage form is taste. Most of the drugs available in oral dosage form have an unpleasant taste which leads to patient incompliance and affects the success ratio of products in the market. Geriatric and paediatric patients suffer more with the bitter taste of medicines. According to the studies reported, it is found that 50% of the population have the problem swallowing tablets, especially the pediatric and geriatric population. Masking the taste of bitter drugs has become necessary in the pharmaceutical field and increasing interest of researchers to develop various methods for masking the bitter taste of drugs. Five major tastes, felt by our tongue are salt, sour, sweet, bitter, and umami. When the drug dissolves with saliva, drug molecules interact with taste receptors present on the tongue and give taste sensations. Although, many solid oral dosage forms like pills, and tablets have an additional advantage of masking and encapsulation of bitter taste drugs; however, they might not be effective for children because they may or may not swallow pills or tablets. There are various other methods that mask the bitter taste of drugs such as the addition of sweeteners and flavouring agents, granulation, coating, inclusion complexes, extrusion method, ion-exchange resins, etc, discussed in the first section of the article. The second part of this article consists of various nanotechnology-based drug delivery systems that were fabricated by researchers to mask the bitter taste of drugs. A brief of recent literature on various nanocarriers that were fabricated or developed for taste masking has been discussed in this part. A better understanding of these methods will help researchers and pharmaceutical industries to develop novel drug delivery systems with improved taste masking properties.
Collapse
Affiliation(s)
| | - Malkiet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manju Nagpal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
5
|
Continuous and Size-Controlled Preparation of Ibuprofen Nanosuspension by Antisolvent Crystallization Method Using Hollow Fiber Membrane. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09639-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Abstract
Taste is the most crucial organoleptic parameter affecting patient compliance in the case of drugs with poor palatability. Taste masking is a major challenge for the development of orally ingested active pharmaceutical constituents in the pharmaceutical industry. Numerous conventional taste-masking techniques have been extensively studied. In parallel, affecting the drug solubility or release is a major concern of conventional taste-masking techniques. Recently, many nanocarrier systems have been introduced, claiming the advantage of effective taste masking without affecting either the drug solubility or its release. In this review, we will present new techniques for taste masking, including taste-masking techniques utilizing nanocarrier systems such as liposomes, polymeric and solid lipid nanoparticles, polymeric micelles, submicron lipid emulsions, and nanogels. We will chiefly highlight the composition of these systems and their applications in designing oral therapeutic delivery systems successful in masking the taste of bitter molecules.
Collapse
|
7
|
Alvi Z, Akhtar M, Mahmood A, Ur-Rahman N, Nazir I, Sadaquat H, Ijaz M, Syed SK, Waqas MK, Wang Y. Enhanced Oral Bioavailability of Epalrestat SBE 7-β-CD Complex Loaded Chitosan Nanoparticles: Preparation, Characterization and in-vivo Pharmacokinetic Evaluation. Int J Nanomedicine 2022; 16:8353-8373. [PMID: 35002232 PMCID: PMC8721161 DOI: 10.2147/ijn.s339857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022] Open
Abstract
Background Epalrestat (EPL) is a carboxylic acid derivative with poor aqueous solubility and its pharmacokinetic features are not fully defined. Purpose Current research aimed to fabricate inclusion complexation of EPL with SBE7 β-CD (IC) and EPL/SBE7 β-CD CS NPs (NP). Methods EPL was complexed with SBE7 β-CD using the co-precipitation method, and the prepared complex was fabricated into nanoparticles using the ionic gelation method. The prepared formulations were characterized for particle size analysis, surface morphology, and in vitro dissolution study. The % inhibition of EPL against α-glucosidase enzyme was also conducted to check the drug’s antidiabetic activity. Finally, an in vivo pharmacokinetic investigation was carried out to determine the concentration of EPL in rabbit plasma of the prepared formulation. In vivo pharmacokinetic studies were conducted by giving a single dose of pure EPL, IC, and NP. Results The size of NP was found to be 241.5 nm with PDI 0.363 and zeta potential of +31.8 mV. The surface of the prepared NP was non-porous, smooth and spherical when compared with pure EPL, SBE7 β-CD and IC. The cumulative drug release (%) from IC and NP was 73% and 88%, respectively, as compared to pure drug (25%). The % inhibition results for in vitro α-glucosidase was reported to be 74.1% and the predicted binding energy for in silico molecular docking was calculated to be −6.6 kcal/mol. The calculated Cmax values for EPL, IC and NP were 4.75±3.64, 66.91±7.58 and 84.27±6.91 μg/mL, respectively. The elimination half-life of EPL was 4 h and reduced to 2 h for IC and NP. The AUC0-α for EPL, IC and NP were 191.5±164.63, 1054.23±161.77 and 1072.5±159.54 μg/mL*h, respectively. Conclusion Taking these parameters into consideration it can be concluded that IC and NP have prospective applications for greatly improved delivery and regulatedt release of poorly water soluble drugs, potentially leading to increase therapeutic efficacy and fewer side effects.
Collapse
Affiliation(s)
- Zunaira Alvi
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Muhammad Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan.,Department of Medical Laboratory Technology, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Arshad Mahmood
- College of Pharmacy, Al Ain University, Abu Dhabi Campus, Abu Dhabi, United Arab Emirates
| | - Nisar Ur-Rahman
- Department of Pharmacy, Royal College of Medical Sciences (RIMS), Multan, Punjab, 60000, Pakistan
| | - Imran Nazir
- Bahawal Victoria Hospital, Bahawalpur, Punjab, 63100, Pakistan
| | - Hadia Sadaquat
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Muhammad Ijaz
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Shahzada Khurram Syed
- Department of Basic Medical Sciences, School of Health Sciences, University of Management and Technology, Lahore, Pakistan
| | - Muhammad Khurram Waqas
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Yi Wang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201600, People's Republic of China
| |
Collapse
|
8
|
Alvi Z, Akhtar M, Rahman NU, Hosny KM, Sindi AM, Khan BA, Nazir I, Sadaquat H. Utilization of Gelling Polymer to Formulate Nanoparticles Loaded with Epalrestat-Cyclodextrin Inclusion Complex: Formulation, Characterization, In-Silico Modelling and In-Vivo Toxicity Evaluation. Polymers (Basel) 2021; 13:polym13244350. [PMID: 34960901 PMCID: PMC8708980 DOI: 10.3390/polym13244350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022] Open
Abstract
Epalrestat (EPL) is an aldose reductase inhibitor with poor aqueous solubility that affects its therapeutic efficacy. The research study was designed to prepare epalrestat-cyclodextrins (EPL-CDs) inclusion complexes to enhance the aqueous solubility by using beta-cyclodextrin (β-CD) and sulfobutyl ether₇ β-CD (SBE7 β-CD). Furthermore, polymeric nanoparticles (PNPs) of EPL-CDs were developed using chitosan (CS) and sodium tripolyphosphate (sTPP). The EPL-CDs complexed formulations were then loaded into chitosan nanoparticles (CS NPs) and further characterized for different physico-chemical properties, thermal stability, drug-excipient compatibility and acute oral toxicity studies. In-silico molecular docking of cross-linker with SBE7 β-CD was also carried out to determine the binding site of the CDs with the cross-linker. The sizes of the prepared NPs were laid in the range of 241.5–348.4 nm, with polydispersity index (PDI) ranging from 0.302–0.578. The surface morphology of the NPs was found to be non-porous, smooth, and spherical. The cumulative percentage of drug release from EPL-CDs loaded CS NPs was found to be higher (75–88%) than that of the pure drug (25%). Acute oral toxicity on animal models showed a biochemical, histological profile with no harmful impact at the cellular level. It is concluded that epalrestat-cyclodextrin chitosan nanoparticles (EPL-CDs-CS NPs) with improved solubility are safe for oral administration since no toxicity was reported on vital organs in rabbits.
Collapse
Affiliation(s)
- Zunaira Alvi
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (Z.A.); (H.S.)
| | - Muhammad Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (Z.A.); (H.S.)
- Department of Medical Laboratory Technology, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
- Correspondence: ; Tel.: +92-300-6720628
| | - Nisar U. Rahman
- Department of Pharmacy, Royal Institute of Medical Sciences (RIMS), Multan 60000, Punjab, Pakistan;
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Amal M. Sindi
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Barkat A. Khan
- Drug Design and Cosmetics Lab (DDCL), Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Khyber Pakhtoonkhwa, Pakistan;
| | - Imran Nazir
- Bahawal Victoria Hospital, Bahawalpur 63100, Punjab, Pakistan;
| | - Hadia Sadaquat
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (Z.A.); (H.S.)
| |
Collapse
|