1
|
Leal ANR, Brandão WQ, de Aguiar MF, Kór DG, França ELT, de Melo CP, de Almeida YMB. Utilizing green zinc oxide nanoparticles as a sensing platform for ascorbic acid. Talanta 2024; 280:126769. [PMID: 39217707 DOI: 10.1016/j.talanta.2024.126769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
We prepared zinc oxide nanoparticles (ZnO NPs) via a green synthesis and used them for the fluorescence sensing of ascorbic acid (AA). For obtaining these nanoparticles, we used an extract from Batavia lettuce as a reducing agent for zinc acetate in a simple, fast, and environmentally friendly synthesis. The ZnO NPs were characterized by X-ray diffractometry (XRD), ultraviolet-visible spectroscopy (UV-vis), Fourier Transform Infrared spectroscopy (FTIR), scanning electron microscopy (SEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA), photoluminescence, point of zero-charge (pHpzc), and chromaticity studies. We verified that the ZnO NPs had an average diameter of 6 nm, with a wurtzite crystalline structure, and when excited at 320 nm emitted radiation in the blue region. The methodology for AA detection is based on the observed increase in fluorescence of the molecule complex formed on the ZnO NPs surface after 20 min of interaction. The results indicated that the proposed technique of analysis is fast, simple, and highly sensitive, with a detection limit for AA of 5.15 μM. Furthermore, the nanoparticles presented excellent photostability for at least 30 days, and low sensitivity to other biological organic molecules. The green ZnO NPs also exhibited an efficient response to the presence of AA in actual complex samples, suggesting that the platform here proposed can find use in clinical analysis protocols.
Collapse
Affiliation(s)
- Andressa N R Leal
- Departamento de Engenharia Química, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil.
| | - Winnie Q Brandão
- Programa de Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - Maurício F de Aguiar
- Departamento de Engenharia Mecânica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - Dionísio G Kór
- Programa de Pós-Graduação em Produção Vegetal, Universidade do Estado de Santa Catarina, 88520-00, Lages, SC, Brazil
| | - Emanoel L T França
- Programa de Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - Celso P de Melo
- Programa de Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil; Departamento de Física, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil.
| | - Yeda M B de Almeida
- Departamento de Engenharia Química, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil; Programa de Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| |
Collapse
|
2
|
Bashar MAE, Hamed A, El-Tabakh MAM, Hashem AH, Zaki AA, Al-Askar AA, Abou-Amra ES, El-Beeh ME, Mehany ABM, Shaaban M, Abdelaziz AM, Shaaban KA, Hasaballah AI. Anticancer, antimicrobial, insecticidal and molecular docking of sarcotrocheliol and cholesterol from the marine soft coral Sarcophyton Trocheliophorum. Sci Rep 2024; 14:28028. [PMID: 39543150 PMCID: PMC11564636 DOI: 10.1038/s41598-024-75446-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/04/2024] [Indexed: 11/17/2024] Open
Abstract
The anticancer, antimicrobial, and insecticidal activities of sarcotrocheliol (1) and cholesterol (2) obtained from the soft coral Sarcophyton trocheliophorum (S. trocheliophorum) were intensively studied. According to this study, both compounds 1 and 2 showed potential cytotoxicity towards the human colorectal carcinomaHCT-116 (IC50 10.4, 11.8 µg/mL) and human liver carcinoma HepG2 cell lines (IC50 8.8, 12.0 µg/mL), respectively. Compounds 1 and 2 were evaluated as potential inhibitors of caspase-3, a member of the cysteine protease family, which is considered a key enzyme in inducing cell apoptosis. Results showed that compounds 1 and 2 have induced apoptosis via up-regulation of caspase-3. Sarcotrocheliol (1) displayed antimicrobial activity against P. aeruginosa (15 mm), B. subtilis (15 mm), M. luteus (14 mm) and C. albicans (15 mm), with a MIC of 1.5 µg/mL against the reported test microorganisms. On the other hand, cholesterol (2) showed less activity towards P. aeruginosa (10 mm), B. subtilis (14 mm), S. aureus (12 mm) and C. albicans (10 mm) with MICs of 3.0, 1.5, 1.5 and 3.0 µg/mL against the tested microorganisms, respectively. Larvicidal activity revealed that compounds 1 and 2 induced remarkable toxicity against the third instar larvae of the mosquito, Culex pipiens even at concentration of 2 ppm. Adulticidal activity data showed that tested compounds are distinctly potent toxicants against the housefly, Musca domestica adult females. Overall, compound 2induced much more insecticidal activity than 1, and M. domestica adult females were more sensitive to tested compounds than C. pipiens larvae. Computationally, Density Functional Theory (DFT) analyses revealed that compound 2 had a higher dipole moment and lower band gap energy when compared to compound 1. So, compounds 2 is chemically more reactive and less stable than compound 1. According to the molecular docking study against PDB IDs: 3KJF, 5UHF and 1ACJ, compounds 1 and 2 demonstrated their activity mode as anticancer, antimicrobial, and insecticidal agents. The compounds exerted many interactions and showed high binding to the proteins, recognizing their potential as drug candidates with broad bioactivities.
Collapse
Affiliation(s)
- Mansour A E Bashar
- Marine Biology Branch, Zoology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Abdelaaty Hamed
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City-Cairo, 11884, Egypt
| | - Mohamed A M El-Tabakh
- Marine Biology Branch, Zoology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
| | - Ahmed A Zaki
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Abdulaziz A Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Eman S Abou-Amra
- Chemistry Department, Faculty of Science (Girls), Al-Azhar University, Cairo, Egypt
| | - Mohamed E El-Beeh
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Mohamed Shaaban
- Chemistry of Natural Compounds Department, Institute of Pharmaceutical Industries, National Research Centre, El-Behoosst. 33, Dokki-Cairo 12622, Cairo, Egypt.
| | - Amer M Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Khaled A Shaaban
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Ahmed I Hasaballah
- Zoology and Entomology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| |
Collapse
|
3
|
Geethamala GV, Swathilakshmi AV, Keerthana S, Vidhyanivetha D, Preethi G, Chitra P, Poonkothai M. Exploring the Potential of Nickel Oxide Nanoparticles Synthesized from Dictyota bartayresiana and its Biological Applications. Biol Trace Elem Res 2024; 202:4260-4278. [PMID: 38095844 DOI: 10.1007/s12011-023-03978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/26/2023] [Indexed: 07/18/2024]
Abstract
The present study validates the impact of nickel oxide nanoparticles (NiONPs) biosynthesized from the brown seaweed Dictyota bartayresiana (DB) and its biological applications. The phytochemicals analyzed in the seaweed extract served as a reducing, capping or stabilizing agent in the formation of nanoparticles. UV visible spectrum of nickel oxide nanoparticles synthesized from DB (DB-NiONPs) represented a prominent peak at 392 nm which validates its formation. Fourier Transmission Infrared Spectroscopy (FT-IR) showcased the presence of functional groups in the biomolecules which aids in the stabilization of DB-NiONPs. The X-ray diffractometry (XRD) revealed the crystalline nature of DB-NiONPs and the particle size was calculated as 18.26 nm. The Scanning electron microscope (SEM) illustrates the irregularly shaped DB-NiONPs and the desired elements were depicted in energy dispersive X-ray (EDX) spectrum which confirms the purity of DB-NiONPs. The DB-NiONPs efficiently decolorised the Black B133 (BB133) dye to 86% in 25 min. The data of adsorption studies well fitted into Langmuir isotherm and pseudo-second order kinetic model. The thermodynamic study substantiated the spontaneous, feasible and endothermic process of adsorption. DB-NiONPs revealed enhanced antimicrobial, larvicidal and nematicidal activities against the selected microbes, larva of Culex pipens and juveniles of Meloidogyne incognita respectively. The phytotoxicity studies revealed the DB-NiONPs had a positive impact on the germination and growth of green gram seedlings.
Collapse
Affiliation(s)
- G V Geethamala
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - A V Swathilakshmi
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - S Keerthana
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - D Vidhyanivetha
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - G Preethi
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - P Chitra
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - M Poonkothai
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India.
| |
Collapse
|
4
|
Gupta D, Boora A, Thakur A, Gupta TK. Green and sustainable synthesis of nanomaterials: Recent advancements and limitations. ENVIRONMENTAL RESEARCH 2023; 231:116316. [PMID: 37270084 DOI: 10.1016/j.envres.2023.116316] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/05/2023]
Abstract
Nanomaterials have been widely used in diverse fields of research such as engineering, biomedical science, energy, and environment. At present, chemical and physical methods are the main methods for large-scale synthesis of nanomaterials, but these methods have adverse effects on the environment, and health issues, consume more energy, and are expensive. The green synthesis of nanoparticles is a promising and environmentally friendly approach to producing materials with unique properties. Natural reagents such as herbs, bacteria, fungi, and agricultural waste are used in the green synthesis of nanomaterials instead of hazardous chemicals and reduce the carbon footprint of the synthesis process. Green synthesis of nanomaterials is highly beneficial compared to traditional methods due to its low cost, negligible pollution level, and safety for the environment and human health. Nanoparticles possess enhanced thermal and electrical conductivity, catalytic activity, and biocompatibility, making them highly attractive for a range of applications, including catalysis, energy storage, optics, biological labeling, and cancer therapy. This review article provides a comprehensive overview of recent advancements in the green synthesis routes of different types of nanomaterials, including metal oxide-based, inert metal-based, carbon-based, and composite-based nanoparticles. Moreover, we discuss the various applications of nanoparticles, emphasizing their potential to revolutionize fields such as medicine, electronics energy, and the environment. The factors affecting the green synthesis of nanomaterials, and their limitations are also pointed out to decide the direction of this research field, Overall, this paper highlights the importance of green synthesis in promoting sustainable development in various industries.
Collapse
Affiliation(s)
- Deepshikha Gupta
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Sector 125, Pin 201301, India.
| | - Anuj Boora
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Sector 125, Pin 201301, India
| | - Amisha Thakur
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Sector 125, Pin 201301, India
| | - Tejendra K Gupta
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Sector 125, Pin 201301, India
| |
Collapse
|
5
|
Hasaballah AI, El-Naggar HA, Abd-El Rahman IE, Al-Otibi F, Alahmadi RM, Abdelzaher OF, Kalaba MH, Amin BH, Mabrouk MM, Gewida AGA, Abd El-Kader MF, Elbahnasawy MA. Surf Redfish-Based ZnO-NPs and Their Biological Activity with Reference to Their Non-Target Toxicity. Mar Drugs 2023; 21:437. [PMID: 37623718 PMCID: PMC10455839 DOI: 10.3390/md21080437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
The marine environment is a rich source of bioactive compounds. Therefore, the sea cucumber was isolated from the Red Sea at the Al-Ain Al-Sokhna coast and it was identified as surf redfish (Actinopyga mauritiana). The aqueous extract of the surf redfish was utilized as an ecofriendly, novel and sustainable approach to fabricate zinc oxide nanoparticles (ZnO-NPs). The biosynthesized ZnO-NPs were physico-chemically characterized and evaluated for their possible antibacterial and insecticidal activities. Additionally, their safety in the non-target organism model (Nile tilapia fish) was also investigated. ZnO-NPs were spherical with an average size of 24.69 ± 11.61 nm and had a peak at 350 nm as shown by TEM and UV-Vis, respectively. XRD analysis indicated a crystalline phase of ZnO-NPs with an average size of 21.7 nm. The FTIR pattern showed biological residues from the surf redfish extract, highlighting their potential role in the biosynthesis process. DLS indicated a negative zeta potential (-19.2 mV) of the ZnO-NPs which is a good preliminary indicator for their stability. ZnO-NPs showed larvicidal activity against mosquito Culex pipiens (LC50 = 15.412 ppm and LC90 = 52.745 ppm) and a potent adulticidal effect to the housefly Musca domestica (LD50 = 21.132 ppm and LD90 = 84.930 ppm). Tested concentrations of ZnO-NPs showed strong activity against the 3rd larval instar. Topical assays revealed dose-dependent adulticidal activity against M. domestica after 24 h of treatment with ZnO-NPs. ZnO-NPs presented a wide antibacterial activity against two fish-pathogen bacteria, Pseudomonas aeruginosa and Aeromonas hydrophila. Histopathological and hematological investigations of the non-target organism, Nile tilapia fish exposed to 75-600 ppm ZnO-NPs provide dose-dependent impacts. Overall, data highlighted the potential applications of surf redfish-mediated ZnO-NPs as an effective and safe way to control mosquitoes, houseflies and fish pathogenic bacteria.
Collapse
Affiliation(s)
- Ahmed I. Hasaballah
- Zoology and Entomology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt; (H.A.E.-N.); (O.F.A.)
| | - Hussein A. El-Naggar
- Zoology and Entomology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt; (H.A.E.-N.); (O.F.A.)
| | - Ibrahim E. Abd-El Rahman
- Department of Plant Protection, Faculty of Agriculture, Al-Azhar University, Cairo 32897, Egypt;
| | - Fatimah Al-Otibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (F.A.-O.); (R.M.A.)
| | - Reham M. Alahmadi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (F.A.-O.); (R.M.A.)
| | - Othman F. Abdelzaher
- Zoology and Entomology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt; (H.A.E.-N.); (O.F.A.)
| | - Mohamed H. Kalaba
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt; (M.H.K.); (M.A.E.)
| | - Basma H. Amin
- Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11884, Egypt;
| | - Mohamed M. Mabrouk
- Fish Production Department, Faculty of Agriculture, Al-Azhar University, Cairo 32897, Egypt; (M.M.M.); (A.G.A.G.)
| | - Ahmed G. A. Gewida
- Fish Production Department, Faculty of Agriculture, Al-Azhar University, Cairo 32897, Egypt; (M.M.M.); (A.G.A.G.)
| | - Marwa F. Abd El-Kader
- Central Laboratory for Aquaculture Research, Sakha Aquaculture Research Unit, Department of Fish Diseases and Management, A.R.C., Kafrelsheikh 33516, Egypt
| | - Mostafa A. Elbahnasawy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt; (M.H.K.); (M.A.E.)
| |
Collapse
|
6
|
Elbahnasawy MA, El-Naggar HA, Abd-El Rahman IE, Kalaba MH, Moghannem SA, Al-Otibi F, Alahmadi RM, Abdelzaher OF, Mabrouk MM, Gewida AGA, AbdEl-Kader MF, Hasaballah AI. Biosynthesized ZnO-NPs Using Sea Cucumber (Holothuria impatiens): Antimicrobial Potential, Insecticidal Activity and In Vivo Toxicity in Nile Tilapia Fish, Oreochromis niloticus. SEPARATIONS 2023; 10:173. [DOI: 10.3390/separations10030173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
In this study, a sustainable and eco-friendly method was used to prepare zinc oxide nanoparticles (ZnO-NPs) using a sea cucumber aqueous extract. Then, ZnO-NPs were characterized by instrumental analysis (UV-vis, HR-TEM, XRD, FT-IR, and DLS) and evaluated for their possible antibacterial, antifungal, and insecticidal activities. Additionally, the toxicity of ZnO-NPs was evaluated in vivo against Nile Tilapia (Oreochromis niloticus). The sea cucumber was collected from the Gulf of Suez (Red Sea) at Al-Ain Al-Sokhna coast in Egypt and identified as Holothuria impatiens. The prepared Hi-ZnO-NPs peaked at 350 nm in UV–Vis spectral analysis. They showed quasi-spherical shaped particles with sizes ranging from 13 nm to 47 nm and a predominate size of 26 nm as indicated by HR-TEM. The XRD pattern of Hi-ZnO-NPs revealed a crystalline phase with an average size of 17.2 nm as calculated by Debye–Scherrer equation. FTIR analysis revealed the possible role of H. impatiens biological molecules in the biosynthesis process of ZnO-NPs. Hi-ZnO-NPs showed a negative zeta potential of −19.6 mV, demonstrating moderate stability. Biosynthesized Hi-ZnO-NPs revealed broad antimicrobial activity against Gram-positive bacteria (S. aureus ATCC 25923 and E. feacalis), Gram-negative bacteria (S. typhi, K. pneumonia and E. coli), and filamentous fungi (Aspergillus niger). Hi-ZnO-NPs demonstrated larvicidal activity against the mosquito, Culex pipiens (LC50 = 2.756 ppm and LC90 = 9.294 ppm), and adulticidal action against the housefly, Musca domestica (LD50 = 4.285 ppm and LD90 = 22.847 ppm). Interestingly, Hi-ZnO-NPs did not show mortality effects against Nile tilapia fish (Oreochromis niloticus), highlighting the potential safety of Hi-ZnO-NPs to highly exposed, non-target organisms. However, histopathological and hematological investigations provided dose-dependent impacts of Hi-ZnO-NPs to Nile tilapia. Overall, data provide an eco-friendly approach for synthesizing novel Hi-ZnO-NPs with multiple biomedical properties and potentially low toxicity to Nile tilapia fish.
Collapse
Affiliation(s)
- Mostafa A. Elbahnasawy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| | - Hussein A. El-Naggar
- Zoology and Entomology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| | | | - Mohamed H. Kalaba
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| | - Saad A. Moghannem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| | - Fatimah Al-Otibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Reham M. Alahmadi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Othman F. Abdelzaher
- Zoology and Entomology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| | - Mohamed M. Mabrouk
- Fish Production Department, Faculty of Agriculture, Al-Azhar University, Cairo 32897, Egypt
| | - Ahmed G. A. Gewida
- Fish Production Department, Faculty of Agriculture, Al-Azhar University, Cairo 32897, Egypt
| | - Marwa F. AbdEl-Kader
- Department of Fish Diseases and Management, Sakha Aquaculture Research Unit, Central Laboratory for Aquaculture Research, A.R.C., Kafrelsheikh 33516, Egypt
| | - Ahmed I. Hasaballah
- Zoology and Entomology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| |
Collapse
|
7
|
Onen H, Luzala MM, Kigozi S, Sikumbili RM, Muanga CJK, Zola EN, Wendji SN, Buya AB, Balciunaitiene A, Viškelis J, Kaddumukasa MA, Memvanga PB. Mosquito-Borne Diseases and Their Control Strategies: An Overview Focused on Green Synthesized Plant-Based Metallic Nanoparticles. INSECTS 2023; 14:221. [PMID: 36975906 PMCID: PMC10059804 DOI: 10.3390/insects14030221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Mosquitoes act as vectors of pathogens that cause most life-threatening diseases, such as malaria, Dengue, Chikungunya, Yellow fever, Zika, West Nile, Lymphatic filariasis, etc. To reduce the transmission of these mosquito-borne diseases in humans, several chemical, biological, mechanical, and pharmaceutical methods of control are used. However, these different strategies are facing important and timely challenges that include the rapid spread of highly invasive mosquitoes worldwide, the development of resistance in several mosquito species, and the recent outbreaks of novel arthropod-borne viruses (e.g., Dengue, Rift Valley fever, tick-borne encephalitis, West Nile, yellow fever, etc.). Therefore, the development of novel and effective methods of control is urgently needed to manage mosquito vectors. Adapting the principles of nanobiotechnology to mosquito vector control is one of the current approaches. As a single-step, eco-friendly, and biodegradable method that does not require the use of toxic chemicals, the green synthesis of nanoparticles using active toxic agents from plant extracts available since ancient times exhibits antagonistic responses and broad-spectrum target-specific activities against different species of vector mosquitoes. In this article, the current state of knowledge on the different mosquito control strategies in general, and on repellent and mosquitocidal plant-mediated synthesis of nanoparticles in particular, has been reviewed. By doing so, this review may open new doors for research on mosquito-borne diseases.
Collapse
Affiliation(s)
- Hudson Onen
- Department of Entomology, Uganda Virus Research Institute, Plot 51/59 Nakiwogo Road, Entebbe P.O. Box 49, Uganda
| | - Miryam M. Luzala
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Stephen Kigozi
- Department of Biological Sciences, Faculty of Science, Kyambogo University, Kampala P.O. Box 1, Uganda
| | - Rebecca M. Sikumbili
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Department of Chemistry, Faculty of Science, University of Kinshasa, Kinshasa B.P. 190, Democratic Republic of the Congo
| | - Claude-Josué K. Muanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Eunice N. Zola
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Sébastien N. Wendji
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Aristote B. Buya
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Aiste Balciunaitiene
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania
| | - Jonas Viškelis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania
| | - Martha A. Kaddumukasa
- Department of Biological Sciences, Faculty of Science, Kyambogo University, Kampala P.O. Box 1, Uganda
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| |
Collapse
|
8
|
Kamaraj C, Gandhi PR, Chandra Satish Kumar R, Balasubramani G, Malafaia G. Biosynthesis and extrinsic toxicity of copper oxide nanoparticles against cattle parasites: An eco-friendly approach. ENVIRONMENTAL RESEARCH 2022; 214:114009. [PMID: 36027957 DOI: 10.1016/j.envres.2022.114009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Plant extracts' ability to collect metals and decrease metal ions makes them a superior candidate for the biosynthesis of nanoparticles; hence, they are referred to as bio-nano factories since both living and dead dried biomass are employed to produce metallic nanoparticles. The antiparasitic activity of biosynthesized copper oxide nanoparticles (CuO NPs) was examined against cow tick larvae (Rhipicephalus microplus, Haemaphysalis bispinosa, and Hippobosca maculata). These parasitic larvae were treated with various concentrations of methanolic leaf extract of A. marmelos (MLE-AM) and biosynthesized CuO NPs for 24 h. CuO NPs were synthesized quickly using A. marmelos leaf extract, and nanoparticle synthesis was identified within 15 min. The results from characteristic XRD, FTIR, SEM, EDX, and TEM analyses confirmed the biosynthesis of CuO NPs. The presence of 26-Hydroxycholesterol was discovered as the predominant chemical present in the GC-MS analysis of MLE-AM. The maximum efficacy was observed in biosynthesized CuO NPs against R. microplus larvae, H. bispinosa adults, and Hip. maculata larvae (LC50 = 4.30, 9.50, and 11.13 mg/L; and LC90 = 8.30, 19.57, and 21.65 mg/L; and 6.219, 6.547, and 2.587). Overall, the bio-fabrication of CuO NPs has the potential to develop better and safer antiparasitic control techniques.
Collapse
Affiliation(s)
- Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur, 603203, Tamil Nadu, India.
| | - Pachiyappan Rajiv Gandhi
- Division of Nano-biotechnology, Department of Zoology, Auxilium College (Autonomous), Gandhi Nagar, 632 006, Vellore District, Tamil Nadu, India.
| | - Rajappan Chandra Satish Kumar
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Head - Drug Testing Laboratory (Indian Medicine), S.R.M. Institute of Science & Technology, Chengalpattu, 603 203, Tamil Nadu, India.
| | - Govindasamy Balasubramani
- Department of Research and Innovation, Saveetha School of Engineering (SSE), Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 602105, Tamil Nadu, India.
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
9
|
Alqarni LS, Alghamdi MD, Alshahrani AA, Nassar AM. Green Nanotechnology: Recent Research on Bioresource-Based Nanoparticle Synthesis and Applications. J CHEM-NY 2022; 2022:1-31. [DOI: 10.1155/2022/4030999] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
In the last decades, the idea of green nanotechnology has been expanding, and researchers are developing greener and more sustainable techniques for synthesizing nanoparticles (NPs). The major objectives are to fabricate NPs using simple, sustainable, and cost-effective procedures while avoiding the use of hazardous materials that are usually utilized as reducing or capping agents. Many biosources, including plants, bacteria, fungus, yeasts, and algae, have been used to fabricate NPs of various shapes and sizes. The authors of this study emphasized the most current studies for fabricating NPs from biosources and their applications in a wide range of fields. This review addressed studies that cover green techniques for synthesizing nanoparticles of Ag, Au, ZnO, CuO, Co3O4, Fe3O4, TiO2, NiO, Al2O3, Cr2O3, Sm2O3, CeO2, La2O3, and Y2O3. Also, their applications were taken under consideration and discussed.
Collapse
Affiliation(s)
- Laila S. Alqarni
- Department of Chemistry, Faculty of Science, Albaha University, Albaha, Saudi Arabia
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Maha D. Alghamdi
- Department of Chemistry, Faculty of Science, Albaha University, Albaha, Saudi Arabia
| | - Aisha A. Alshahrani
- Department of Chemistry, Faculty of Science, Albaha University, Albaha, Saudi Arabia
| | - Amr M. Nassar
- Chemistry Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
10
|
Unveiling Antimicrobial and Insecticidal Activities of Biosynthesized Selenium Nanoparticles Using Prickly Pear Peel Waste. J Funct Biomater 2022; 13:jfb13030112. [PMID: 35997450 PMCID: PMC9397004 DOI: 10.3390/jfb13030112] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
In the current study, prickly pear peel waste (PPPW) extract was used for the biosynthesis of selenium nanoparticles through a green and eco-friendly method for the first time. The biosynthesized SeNPs were characterized using UV-Vis, XRD, FTIR, TEM, SEM, EDX, and mapping. Characterization results revealed that biosynthesized SeNPs were spherical, polydisperse, highly crystalline, and had sizes in the range of 10–87.4 nm. Antibacterial, antifungal, and insecticidal activities of biosynthesized SeNPs were evaluated. Results revealed that SeNPs exhibited promising antibacterial against Gram negative (E. coli and P. aeruginosa) and Gram positive (B. subtilis and S. aureus) bacteria where MICs were 125, 125, 62.5, and 15.62 µg/mL, respectively. Moreover, SeNPs showed potential antifungal activity toward Candida albicans and Cryptococcus neoformans where MICs were 3.9 and 7.81 µg/mL, respectively. Furthermore, tested crud extract and SeNPs severely induced larvicidal activity for tested mosquitoes with LC50 and LC90 of 219.841, 950.087 mg/L and 75.411, 208.289 mg/L, respectively. The fecundity and hatchability of C. pipiens mosquito were significantly decreased as applied concentrations increased either for the crude or the fabricated SeNPs extracts. In conclusion, the biosynthesized SeNPs using prickly pear peel waste have antibacterial, antifungal, and insecticidal activities, which can be used in biomedical and environmental applications.
Collapse
|
11
|
Mosquitocidal Activity of the Methanolic Extract of Annickiachlorantha and Its Isolated Compounds against Culex pipiens, and Their Impact on the Non-Target Organism Zebrafish, Danio rerio. INSECTS 2022; 13:insects13080676. [PMID: 36005300 PMCID: PMC9409109 DOI: 10.3390/insects13080676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023]
Abstract
In this study, the crude extract and its isolated compounds from the stem bark of Annickia chlorantha were tested for their larvicidal, developmental, and repellent activity against the mosquito vector, Culex pipiens, besides their toxicity to the non-target aquatic organism, the zebrafish (Danio rerio). The acute larvicidal activity of isolated compounds; namely, palmatine, jatrorrhizine, columbamine, β-sitosterol, and Annickia chlorantha methanolic extract (AC), was observed. Developmentally, the larval duration was significantly prolonged when palmatine and β-sitosterol were applied, whereas the pupal duration was significantly prolonged for almost all treatments except palmatine and jatrorrhizine, where it shortened from those in the control. Acetylcholinesterase (AChE) enzyme showed different activity patterns, where it significantly increased in columbamine and β-sitosterol, and decreased in (AC), palmatine, and jatrorrhizine treatments, whereas glutathione S-transferase (GST) enzyme was significantly increased when AC methanolic extract/isolated compounds were applied, compared to the control. The adult emergence percentages were significantly decreased in all treatments, whereas tested compounds revealed non-significant (p > 0.05) changes in the sex ratio percentages, with a slight female-to-male preference presented in the AC-treated group. Additionally, the tested materials revealed repellence action; interestingly, palmatine and jatrorrhizine recorded higher levels of protection, followed by AC, columbamine, and β-sitosterol for 7 consecutive hours compared to the negative and positive control groups. The non-target assay confirms that the tested materials have very low toxic activity compared to the reported toxicity against mosquito larvae. A docking simulation was employed to better understand the interaction of the isolated compounds with the enzymes, AChE and GST. Additionally, DFT calculations revealed that the reported larvicidal activity may be due to the differing electron distributions among tested compounds. Overall, this study highlights the potential of A. chlorantha extract and its isolated compounds as effective mosquitocidal agents with a very low toxic effect on non-target organisms.
Collapse
|
12
|
Facile Green Synthesis of Zinc Oxide Nanoparticles with Potential Synergistic Activity with Common Antifungal Agents against Multidrug-Resistant Candidal Strains. CRYSTALS 2022. [DOI: 10.3390/cryst12060774] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The high incidence of fungal resistance to antifungal drugs represents a global concern, contributing to high levels of morbidity and mortality, especially among immunocompromised patients. Moreover, conventional antifungal medications have poor therapeutic outcomes, as well as possible toxicities resulting from long-term administration. Accordingly, the aim of the present study was to investigate the antifungal effectiveness of biogenic zinc oxide nanoparticles (ZnO NPs) against multidrug-resistant candidal strains. Biogenic ZnO NPs were characterized using physicochemical methods, such as UV-vis spectroscopy, transmission electron microscopy (TEM), energy-dispersive X ray (EDX) spectroscopy, FTIR (Fourier transform infrared) spectroscopy and X-ray powder diffraction (XRD) analysis. UV spectral analysis revealed the formation of two absorption peaks at 367 and 506 nm, which preliminarily indicated the successful synthesis of ZnO NPs, whereas TEM analysis showed that ZnO NPs exhibited an average particle size of 22.84 nm. The EDX spectrum confirmed the successful synthesis of ZnO nanoparticles free of impurities. The FTIR spectrum of the biosynthesized ZnO NPs showed different absorption peaks at 3427.99, 1707.86, 1621.50, 1424.16, 1325.22, 1224.67, 1178.22, 1067.69, 861.22, 752.97 and 574.11 cm−1, corresponding to various functional groups. The average zeta potential value of the ZnO NPs was −7.45 mV. XRD analysis revealed the presence of six diffraction peaks at 2θ = 31.94, 34.66, 36.42, 56.42, 69.54 and 76.94°. The biogenic ZnO NPs (100µg/disk) exhibited potent antifungal activity against C. albicans, C. glabrata and C. tropicalis strains, with suppressive zone diameters of 24.18 ± 0.32, 20.17 ± 0.56 and 26.35 ± 0.16 mm, respectively. The minimal inhibitory concentration (MIC) of ZnO NPs against C. tropicalis strain was found to be 10 μg/mL, whereas the minimal fungicidal concentration (MFC) was found to be 20 μg/mL. Moreover, ZnO NPs revealed a potential synergistic efficiency with fluconazole, nystatin and clotrimazole antifungal drugs against C. albicans strain, whereas terbinafine, nystatin and itraconazole antifungal drugs showed a potential synergism with ZnO NPs against C. glabrata as a multidrug-resistant strain. In conclusion, pomegranate peel extract mediated green synthesis of ZnO NPs with potential physicochemical features and antimicrobial activity. The biosynthesized ZnO NPs could be utilized for formulation of novel drug combinations to boost the antifungal efficiency of commonly used antifungal agents.
Collapse
|
13
|
Caesalpinia crista Seeds Mediated Green Synthesis of Zinc Oxide Nanoparticles for Antibacterial, Antioxidant, and Anticancer Activities. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00952-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|