1
|
Schindler EA, Takita C, Collado-Mesa F, Reis IM, Zhao W, Yang GR, Acosta LG, Hu JJ. The interrelationship between obesity and race in breast cancer prognosis: a prospective cohort study. BMC Womens Health 2024; 24:312. [PMID: 38816709 PMCID: PMC11138080 DOI: 10.1186/s12905-024-03020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/12/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Obesity is associated with an increased breast cancer risk in postmenopausal women and may contribute to worse outcomes. Black women experience higher obesity and breast cancer mortality rates than non-Black women. We examined associations between race, obesity, and clinical tumor stage with breast cancer prognosis. METHODS We conducted a prospective cohort study in 1,110 breast cancer patients, using univariable and multivariable Cox regression analyses to evaluate the effects of obesity, race/ethnicity, and clinical tumor stage on progression-free and overall survival (PFS and OS). RESULTS 22% of participants were Black, 64% were Hispanic White, and 14% were non-Hispanic White or another race. 39% of participants were obese (body mass index [BMI] ≥ 30 kg/m2). In univariable analyses, tumor stage III-IV was associated with worse PFS and OS compared to tumor stage 0-II (hazard ratio [HR] = 4.68, 95% confidence interval [CI] = 3.52-6.22 for PFS and HR = 5.92, 95% CI = 4.00-8.77 for OS). Multivariable analysis revealed an association between Black race and worse PFS in obese (HR = 2.19, 95% CI = 1.06-4.51) and non-obese (HR = 2.11, 95% CI = 1.05-4.21) women with tumors staged 0-II. Obesity alone was not associated with worse PFS or OS. CONCLUSIONS Results suggest a complex interrelationship between obesity and race in breast cancer prognosis. The association between the Black race and worse PFS in tumor stages 0-II underscores the importance of early intervention in this group. Future studies are warranted to evaluate whether alternative measures of body composition and biomarkers are better prognostic indicators than BMI among Black breast cancer survivors.
Collapse
Affiliation(s)
- Emma A Schindler
- Department of Public Health Sciences, University of Miami Miller School of Medicine, 1120 NW 14th Street, CRB 1511, Miami, FL, 33136, USA
| | - Cristiane Takita
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Fernando Collado-Mesa
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Isildinha M Reis
- Department of Public Health Sciences, University of Miami Miller School of Medicine, 1120 NW 14th Street, CRB 1511, Miami, FL, 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Wei Zhao
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - George R Yang
- Department of Public Health Sciences, University of Miami Miller School of Medicine, 1120 NW 14th Street, CRB 1511, Miami, FL, 33136, USA
| | - Laura G Acosta
- Department of Public Health Sciences, University of Miami Miller School of Medicine, 1120 NW 14th Street, CRB 1511, Miami, FL, 33136, USA
| | - Jennifer J Hu
- Department of Public Health Sciences, University of Miami Miller School of Medicine, 1120 NW 14th Street, CRB 1511, Miami, FL, 33136, USA.
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
2
|
Wang HY, Diao Y, Tan PZ, Liang H. Four centrosome-related genes to predict the prognosis and drug sensitivity of patients with colon cancer. World J Gastrointest Oncol 2024; 16:1908-1924. [PMID: 38764831 PMCID: PMC11099447 DOI: 10.4251/wjgo.v16.i5.1908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 02/22/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND As the primary microtubule organizing center in animal cells, centrosome abnormalities are involved in human colon cancer. AIM To explore the role of centrosome-related genes (CRGs) in colon cancer. METHODS CRGs were collected from public databases. Consensus clustering analysis was performed to separate the Cancer Genome Atlas cohort. Univariate Cox and least absolute shrinkage selection operator regression analyses were performed to identify candidate prognostic CRGs and construct a centrosome-related signature (CRS) to score colon cancer patients. A nomogram was developed to evaluate the CRS risk in colon cancer patients. An integrated bioinformatics analysis was conducted to explore the correlation between the CRS and tumor immune microenvironment and response to immunotherapy, chemotherapy, and targeted therapy. Single-cell transcriptome analysis was conducted to examine the immune cell landscape of core prognostic genes. RESULTS A total of 726 CRGs were collected from public databases. A CRS was constructed, which consisted of the following four genes: TSC1, AXIN2, COPS7A, and MTUS1. Colon cancer patients with a high-risk signature had poor survival. Patients with a high-risk signature exhibited decreased levels of plasma cells and activated memory CD4+ T cells. Regarding treatment response, patients with a high-risk signature were resistant to immunotherapy, chemotherapy, and targeted therapy. COPS7A expression was relatively high in endothelial cells and fibroblasts. MTUS1 expression was high in endothelial cells, fibroblasts, and malignant cells. CONCLUSION We constructed a centrosome-related prognostic signature that can accurately predict the prognosis of colon cancer patients, contributing to the development of individualized treatment for colon cancer.
Collapse
Affiliation(s)
- Hui-Yan Wang
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin 150086, Heilongjiang Province, China
| | - Yan Diao
- Department of Clinical Laboratory, Heilongjiang Province Hospital, Harbin 150000, Heilongjiang Province, China
| | - Pei-Zhu Tan
- Translational Medicine Center of Northern China, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Huan Liang
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin 150086, Heilongjiang Province, China
| |
Collapse
|
3
|
Johnson JA, Moore BJ, Syrnioti G, Eden CM, Wright D, Newman LA. Landmark Series: The Cancer Genome Atlas and the Study of Breast Cancer Disparities. Ann Surg Oncol 2023; 30:6427-6440. [PMID: 37587359 DOI: 10.1245/s10434-023-13866-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/24/2023] [Indexed: 08/18/2023]
Abstract
Race-related variation in breast cancer incidence and mortality are well-documented in the United States. The effect of genetic ancestry on disparities in tumor genomics, risk factors, treatment, and outcomes of breast cancer is less understood. The Cancer Genome Atlas (TCGA) is a publicly available resource that has allowed for the recent emergence of genome analysis research seeking to characterize tumor DNA and protein expression by ancestry as well as the social construction of race and ethnicity. Results from TCGA based studies support previous clinical evidence that demonstrates that American women with African ancestry are more likely to be afflicted with breast cancers featuring aggressive biology and poorer outcomes compared with women with other backgrounds. Data from TCGA based studies suggest that Asian women have tumors with favorable immune microenvironments and may experience better disease-free survival compared with white Americans. TCGA contains limited data on Hispanic/Latinx patients due to small sample size. Overall, TCGA provides important opportunities to define the molecular, biologic, and germline genetic factors that contribute to breast cancer disparities.
Collapse
Affiliation(s)
- Josh A Johnson
- Department of Surgery, New York Presbyterian, Weill Cornell Medicine, New York, NY, USA
| | | | - Georgia Syrnioti
- Department of Surgery, New York Presbyterian, Weill Cornell Medicine, New York, NY, USA
| | - Claire M Eden
- Department of Surgery, New York Presbyterian Queens, Weill Cornell Medicine, Flushing, NY, USA
| | - Drew Wright
- Samuel J. Wood Library, Weill Cornell Medicine, New York, NY, USA
| | - Lisa A Newman
- Department of Surgery, New York Presbyterian, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Schindler EA, Takita C, Collado-Mesa F, Reis IM, Zhao W, Yang GR, Acosta LG, Hu JJ. The Interrelationship between Obesity and Race in Breast Cancer Prognosis: A Prospective Cohort Study. RESEARCH SQUARE 2023:rs.3.rs-3338366. [PMID: 37841856 PMCID: PMC10571610 DOI: 10.21203/rs.3.rs-3338366/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Purpose Obesity is associated with an increased breast cancer risk in postmenopausal women and may contribute to worse outcomes. Black women experience higher obesity and breast cancer mortality rates than non-Black women. We examined associations between race, obesity, and clinical tumor stage with breast cancer prognosis. Methods We conducted a prospective cohort study in 1,110 breast cancer patients, using univariable and multivariable Cox regression analyses to evaluate the effects of obesity, race/ethnicity, and clinical tumor stage on progression-free and overall survival (PFS and OS). Results 22% of participants were Black, 64% were Hispanic White, and 14% were non-Hispanic White or another race. 39% of participants were obese (body mass index [BMI] ≥ 30 kg/m2). In univariable analyses, tumor stage III-IV was associated with worse PFS and OS compared to tumor stage 0-II (hazard ratio [HR] = 4.68, 95% confidence interval [CI] = 3.52-6.22 for PFS and HR = 5.92, 95% CI = 4.00-8.77 for OS). Multivariable analysis revealed an association between Black race and worse PFS in obese (HR = 2.19, 95% CI = 1.06-4.51) and non-obese (HR = 2.11, 95% CI = 1.05-4.21) women with tumors staged 0-II. Obesity alone was not associated with worse PFS or OS. Conclusion Results suggest a complex interrelationship between obesity and race in breast cancer prognosis. The association between Black race and worse PFS in tumor stages 0-II underscores the importance of early intervention in this group. Future studies are warranted to evaluate whether alternative measures of body composition and biomarkers are better prognostic indicators than BMI among Black breast cancer survivors.
Collapse
Affiliation(s)
| | - Cristiane Takita
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Fernando Collado-Mesa
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Isildinha M Reis
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Wei Zhao
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - George R Yang
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Laura G Acosta
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Jennifer J Hu
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| |
Collapse
|
5
|
Hu X, Zhao S, Cai Y, Swain SS, Yao L, Liu W, Yan T. Network Pharmacology-Integrated Molecular Docking Reveals the Expected Anticancer Mechanism of Picrorhizae Rhizoma Extract. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3268773. [PMID: 36158891 PMCID: PMC9507705 DOI: 10.1155/2022/3268773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
Abstract
This study sought to explore the anticancer mechanism of Picrorhizae Rhizoma (PR) extract based on network pharmacology and molecular docking. The potential chemicals of PR were screened through the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and relevant literatures. Corresponding targets of active ingredients were found with the help of the UniProtKB database, and therapeutic targets for cancer action were screened with the help of the GeneCards database. We used Cytoscape software to construct the compound-target-pathway network of PR extract. We utilized the STRING database to obtain the protein-protein interaction (PPI) network. We used DAVID database combining Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Finally, molecular docking was employed for initial efficacy checking. We have identified 16 potential active components of PR through screening, involving 112 disease action targets. Utilizing the GeneCards database, 112 intersecting targets between PR extract and cancer were found, which mainly exerts anticancer effects by regulating tumor necrosis factor (TNF), recombinant caspase 3 (CASP3), c-Jun NH2-terminal kinase (JNK)/JUN, epidermal growth factor receptor (EGFR), and estrogen receptor-1 (ESR1) with some other target genes and pathways associated with cancer. The major anticancer species are prostate cancer, colorectal cancer, small cell lung cancer, etc. In the molecular docking study, herbactin had a strong affinity for TNF. Based on network pharmacology and molecular docking studies, PR and their compounds have demonstrated potential anticancer activities against several key targets. Our preliminary findings provide a strong foundation for further experiments with PR constituents.
Collapse
Affiliation(s)
- Xiaomeng Hu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China
| | - Shengchao Zhao
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yi Cai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shasank S. Swain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023 Odisha, India
| | - Liangliang Yao
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Wei Liu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
6
|
Secchi M, Lodola C, Garbelli A, Bione S, Maga G. DEAD-Box RNA Helicases DDX3X and DDX5 as Oncogenes or Oncosuppressors: A Network Perspective. Cancers (Basel) 2022; 14:cancers14153820. [PMID: 35954483 PMCID: PMC9367324 DOI: 10.3390/cancers14153820] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The transformation of a normal cell into a cancerous one is caused by the deregulation of different metabolic pathways, involving a complex network of protein–protein interactions. The cellular enzymes DDX3X and DDX5 play important roles in the maintenance of normal cell metabolism, but their deregulation can accelerate tumor transformation. Both DDX3X and DDX5 interact with hundreds of different cellular proteins, and depending on the specific pathways in which they are involved, both proteins can either act as suppressors of cancer or as oncogenes. In this review, we summarize the current knowledge about the roles of DDX3X and DDX5 in different tumors. In addition, we present a list of interacting proteins and discuss the possible contribution of some of these protein–protein interactions in determining the roles of DDX3X and DDX5 in the process of cancer proliferation, also suggesting novel hypotheses for future studies. Abstract RNA helicases of the DEAD-box family are involved in several metabolic pathways, from transcription and translation to cell proliferation, innate immunity and stress response. Given their multiple roles, it is not surprising that their deregulation or mutation is linked to different pathological conditions, including cancer. However, while in some cases the loss of function of a given DEAD-box helicase promotes tumor transformation, indicating an oncosuppressive role, in other contexts the overexpression of the same enzyme favors cancer progression, thus acting as a typical oncogene. The roles of two well-characterized members of this family, DDX3X and DDX5, as both oncogenes and oncosuppressors have been documented in several cancer types. Understanding the interplay of the different cellular contexts, as defined by the molecular interaction networks of DDX3X and DDX5 in different tumors, with the cancer-specific roles played by these proteins could help to explain their apparently conflicting roles as cancer drivers or suppressors.
Collapse
|