1
|
Ning L, Xie N. SIRT3 Expression Predicts Overall Survival and Neoadjuvant Chemosensitivity in Triple-Negative Breast Cancer. Cancer Manag Res 2024; 16:137-150. [PMID: 38476973 PMCID: PMC10929660 DOI: 10.2147/cmar.s445248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Background The Sirtuin (SIRT) family consists of seven evolutionary conserved NAD-dependent deacetylases that play important roles in various cancers, including breast cancer (BC). SIRTs expression has been reported to have prognostic value in BC, but these studies used limited sample size and yielded inconsistent conclusions. This study evaluated the association of SIRT3 and other SIRT family members with survival and neoadjuvant chemotherapy outcomes. Methods BC patients' data was obtained from the TCGA-BRCA, METABRIC and GEO databases, comprising 4336 samples. SIRTs expression and overall survival (OS) were analyzed using Kaplan-Meier analysis and Cox proportional hazards regression. SIRT3 expression levels were compared between pathologic complete response (pCR) and non-pCR groups after neoadjuvant chemotherapy in triple-negative breast cancer (TNBC). Protein-protein interaction networks were constructed using the STRING database. Gene set enrichment analysis (GSEA) was performed to explore potential functions of SIRT3. Results Through systematic analysis of SIRTs expression and OS of BC using three independent cohorts: TCGA-BRCA, METABRIC and GSE16446, we found that high SIRT3 expression was significantly associated with worse OS in TNBC in the TCGA-BRCA cohort, which was validated in the METABRIC and GSE16446 cohorts. SIRT3 expression was correlated with BC subtypes and American Joint Committee on Cancer (AJCC) T stage, but not with age-at-diagnosis, race, or tumor stage. Moreover, TNBC patients with higher SIRT3 expression had lower pCR rates after neoadjuvant chemotherapy (p = 6.40e-03) and SIRT3 expression was significantly lower in the pCR group than in the non-pCR group in TNBC (p = 4.2e-03). GSEA indicated that SIRT3 was involved in drug-related pathways such as oxidative phosphorylation, metabolism of xenobiotics by cytochrome P450, and drug metabolism. Conclusion Our study suggests that SIRT3 is a potential biomarker for both OS and neoadjuvant chemosensitivity in TNBC. It may also assist in selecting suitable candidates and treatment options for TNBC patients.
Collapse
Affiliation(s)
- Lvwen Ning
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, People’s Republic of China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People’s Republic of China
| | - Ni Xie
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, People’s Republic of China
| |
Collapse
|
2
|
Abdel-Sattar OE, Allam RM, Al-Abd AM, El-Halawany AM, EL-Desoky AM, Mohamed SO, Sweilam SH, Khalid M, Abdel-Sattar E, Meselhy MR. Hypophyllanthin and Phyllanthin from Phyllanthus niruri Synergize Doxorubicin Anticancer Properties against Resistant Breast Cancer Cells. ACS OMEGA 2023; 8:28563-28576. [PMID: 37576627 PMCID: PMC10413485 DOI: 10.1021/acsomega.3c02953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023]
Abstract
Doxorubicin (DOX) is a cornerstone chemotherapeutic agent for the treatment of several malignancies such as breast cancer; however, its activity is ameliorated by the development of a resistant phenotype. Phyllanthus species have been studied previously for their potential anticancer properties. The current work is aimed to study the potential cytotoxicity and chemomodulatory effects of hypophyllanthin (PN4) and phyllanthin (PN5) isolated from Phyllanthus niruri to DOX against the adriamycin multidrug-resistant breast cancer cells (MCF-7ADR) and elucidate their mechanism of action. The major compounds of the active methylene chloride fraction were isolated and assessed for their potential cytotoxicity and chemomodulatory effects on DOX against naïve (MCF-7) and resistant breast (MCF-7ADR) cancer cells. The mechanism of action of both compounds in terms of their impacts on programmed/non-programmed cell death (apoptosis and autophagy/necrosis), cell cycle progression/arrest, and tumor cell migration/invasion was investigated. Both compounds PN4 and PN5 showed a moderate but similar potency against MCF-7 as well as MCF-7ADR and significantly synergized DOX-induced anticancer properties against MCF-7ADR. The chemomodulatory effect of both compounds to DOX was found to be via potentiating DOX-induced cell cycle interference and apoptosis induction. It was found that PN4 and PN5 blocked the apoptosis-escape autophagy pathway in MCF-7ADR. On the molecular level, both compounds interfered with SIRT1 expression and consequently suppressed Akt phosphorylation, and PN5 blocked apoptosis escape. Furthermore, PN4 and PN5 showed promising antimigratory and anti-invasive effects against MCF-7ADR, as confirmed by suppression of N-cadherin/β-catenin expression. In conclusion, for the first time, hypophyllanthin and phyllanthin isolated from P. niruri showed promising chemomodulatory effects to the DOX-induced chemotherapeutic activity against MCF-7ADR. Both compounds significantly synergized DOX-induced anticancer properties against MCF-7ADR. This enhanced activity was explained by further promoting DOX-induced apoptosis and suppressing the apoptosis-escape autophagy feature of the resistant breast cancer cells. Both compounds (hypophyllanthin and phyllanthin) interfered with the SIRT1/Akt pathway and suppressed the N-cadherin/β-catenin axis, confirming the observed antiproliferative, cytotoxic, and anti-invasive effects of hypophyllanthin and phyllanthin.
Collapse
Affiliation(s)
- Ola E. Abdel-Sattar
- Pharmacognosy Department,
Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo 11562, Egypt
| | - Rasha M. Allam
- Pharmacology
Department, Medical Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Ahmed M. Al-Abd
- Pharmacology
Department, Medical Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Ali M. El-Halawany
- Pharmacognosy Department,
Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo 11562, Egypt
| | - Ahmed M. EL-Desoky
- Department of Molecular Biology,
Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat City 32958, Egypt
| | - Shanaz O. Mohamed
- School of Pharmaceutical
Sciences, Universiti Sains Malaysia, Gelugor, Penang 11700, Malaysia
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of
Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo 11829, Egypt
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Essam Abdel-Sattar
- Pharmacognosy Department,
Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo 11562, Egypt
| | - Meselhy R. Meselhy
- Pharmacognosy Department,
Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo 11562, Egypt
| |
Collapse
|