1
|
Yuan J, Wu M, Qiu L, Xu W, Fei Y, Zhu Y, Shi K, Li Y, Luo J, Ding Z, Sun X, Zhou S. Tumor habitat-based MRI features assessing early response in locally advanced nasopharyngeal carcinoma. Oral Oncol 2024; 158:106980. [PMID: 39151333 DOI: 10.1016/j.oraloncology.2024.106980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/08/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVE The early response to concurrent chemoradiotherapy in patients with locally advanced nasopharyngeal carcinoma (LA-NPC) is closely correlated with prognosis. In this study, we aimed to predict early response using a combined model that combines sub-regional radiomics features from multi-sequence MRI with clinically relevant factors. METHODS A total of 104 patients with LA-NPC were randomly divided into training and test cohorts at a ratio of 3:1. Radiomic features were extracted from subregions within the tumor area using the K-means clustering method, and feature selection was performed using LASSO regression. Four models were established: a radiomics model, a clinical model, an Intratumor Heterogeneity (ITH) score-based model and a combined model that integrates the ITH score with clinical factors. The predictive performance of these models was evaluated using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). RESULTS Among the models, the combined model incorporating the ITH score and clinical factors exhibited the highest predictive performance in the test cohort (AUC=0.838). Additionally, the models based on ITH score showed superior prognostic value in both the training cohort (AUC=0.888) and the test cohort (AUC=0.833). CONCLUSION The combined model that integrates the ITH score with clinical factors exhibited superior performance in predicting early response following concurrent chemoradiotherapy in patients with LA-NPC.
Collapse
Affiliation(s)
- Jinling Yuan
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China; The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Mengxing Wu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China; The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Lei Qiu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China; The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Weilin Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yinjiao Fei
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yuchen Zhu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China; The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Kexin Shi
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China; The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yurong Li
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Jinyan Luo
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Zhou Ding
- Department of Radiation Oncology, Lianshui County People's Hospital, Huai'an 223400, Jiangsu, China.
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Shu Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
2
|
Sun Y, Liang F, Yang J, Liu Y, Shen Z, Zhou C, Xia Y. Pilot study: radiomic analysis for predicting treatment response to whole-brain radiotherapy combined temozolomide in lung cancer brain metastases. Front Oncol 2024; 14:1395313. [PMID: 39193384 PMCID: PMC11347322 DOI: 10.3389/fonc.2024.1395313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Objective The objective of this study is to assess the viability of utilizing radiomics for predicting the treatment response of lung cancer brain metastases (LCBM) to whole-brain radiotherapy (WBRT) combined with temozolomide (TMZ). Methods Fifty-three patients diagnosed with LCBM and undergoing WBRT combined with TMZ were enrolled. Patients were divided into responsive and non-responsive groups based on the RANO-BM criteria. Radiomic features were extracted from contrast-enhanced the whole brain tissue CT images. Feature selection was performed using t-tests, Pearson correlation coefficients, and Least Absolute Shrinkage And Selection (LASSO) regression. Logistic regression was employed to construct the radiomics model, which was then integrated with clinical data to develop the nomogram model. Model performance was evaluated using receiver operating characteristic (ROC) curves, and clinical utility was assessed using decision curve analysis (DCA). Results A total of 1834 radiomic features were extracted from each patient's images, and 3 features with predictive value were selected. Both the radiomics and nomogram models exhibited satisfactory predictive performance and clinical utility, with the nomogram model demonstrating superior predictive value. The ROC analysis revealed that the AUC of the radiomics model in the training and testing sets were 0.776 and 0.767, respectively, while the AUC of the nomogram model were 0.799 and 0.833, respectively. DCA curves demonstrated that both models provided benefits to patients across various thresholds. Conclusion Radiomic-defined image biomarkers can effectively predict the treatment response of WBRT combined with TMZ in patients with LCBM, offering potential to optimize treatment decisions for this condition.
Collapse
Affiliation(s)
- Yichu Sun
- Department of Radiation Oncology, The First People's Hospital of Lianyungang/Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Fei Liang
- Department of Radiation Oncology, The First People's Hospital of Lianyungang/Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Jing Yang
- Department of Radiation Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Yong Liu
- Department of Radiation Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Ziqiang Shen
- Department of Radiation Oncology, The First People's Hospital of Lianyungang/Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Chong Zhou
- Department of Radiation Oncology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Youyou Xia
- Department of Radiation Oncology, The First People's Hospital of Lianyungang/Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu, China
- Department of Radiation Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| |
Collapse
|
3
|
Sabeghi P, Zarand P, Zargham S, Golestany B, Shariat A, Chang M, Yang E, Rajagopalan P, Phung DC, Gholamrezanezhad A. Advances in Neuro-Oncological Imaging: An Update on Diagnostic Approach to Brain Tumors. Cancers (Basel) 2024; 16:576. [PMID: 38339327 PMCID: PMC10854543 DOI: 10.3390/cancers16030576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
This study delineates the pivotal role of imaging within the field of neurology, emphasizing its significance in the diagnosis, prognostication, and evaluation of treatment responses for central nervous system (CNS) tumors. A comprehensive understanding of both the capabilities and limitations inherent in emerging imaging technologies is imperative for delivering a heightened level of personalized care to individuals with neuro-oncological conditions. Ongoing research in neuro-oncological imaging endeavors to rectify some limitations of radiological modalities, aiming to augment accuracy and efficacy in the management of brain tumors. This review is dedicated to the comparison and critical examination of the latest advancements in diverse imaging modalities employed in neuro-oncology. The objective is to investigate their respective impacts on diagnosis, cancer staging, prognosis, and post-treatment monitoring. By providing a comprehensive analysis of these modalities, this review aims to contribute to the collective knowledge in the field, fostering an informed approach to neuro-oncological care. In conclusion, the outlook for neuro-oncological imaging appears promising, and sustained exploration in this domain is anticipated to yield further breakthroughs, ultimately enhancing outcomes for individuals grappling with CNS tumors.
Collapse
Affiliation(s)
- Paniz Sabeghi
- Department of Radiology, Keck School of Medicine, University of Southern California, 1500 San Pablo St., Los Angeles, CA 90033, USA; (P.S.); (E.Y.); (P.R.); (D.C.P.)
| | - Paniz Zarand
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran;
| | - Sina Zargham
- Department of Basic Science, California Northstate University College of Medicine, 9700 West Taron Drive, Elk Grove, CA 95757, USA;
| | - Batis Golestany
- Division of Biomedical Sciences, Riverside School of Medicine, University of California, 900 University Ave., Riverside, CA 92521, USA;
| | - Arya Shariat
- Kaiser Permanente Los Angeles Medical Center, 4867 W Sunset Blvd, Los Angeles, CA 90027, USA;
| | - Myles Chang
- Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA 90089, USA;
| | - Evan Yang
- Department of Radiology, Keck School of Medicine, University of Southern California, 1500 San Pablo St., Los Angeles, CA 90033, USA; (P.S.); (E.Y.); (P.R.); (D.C.P.)
| | - Priya Rajagopalan
- Department of Radiology, Keck School of Medicine, University of Southern California, 1500 San Pablo St., Los Angeles, CA 90033, USA; (P.S.); (E.Y.); (P.R.); (D.C.P.)
| | - Daniel Chang Phung
- Department of Radiology, Keck School of Medicine, University of Southern California, 1500 San Pablo St., Los Angeles, CA 90033, USA; (P.S.); (E.Y.); (P.R.); (D.C.P.)
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine, University of Southern California, 1500 San Pablo St., Los Angeles, CA 90033, USA; (P.S.); (E.Y.); (P.R.); (D.C.P.)
| |
Collapse
|