1
|
Zhao K, Jiang X, Wu X, Feng H, Wang X, Wan Y, Wang Z, Yan N. Recent development and applications of differential electrochemical mass spectrometry in emerging energy conversion and storage solutions. Chem Soc Rev 2024; 53:6917-6959. [PMID: 38836324 DOI: 10.1039/d3cs00840a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Electrochemical energy conversion and storage are playing an increasingly important role in shaping the sustainable future. Differential electrochemical mass spectrometry (DEMS) offers an operando and cost-effective tool to monitor the evolution of gaseous/volatile intermediates and products during these processes. It can deliver potential-, time-, mass- and space-resolved signals which facilitate the understanding of reaction kinetics. In this review, we show the latest developments and applications of DEMS in various energy-related electrochemical reactions from three distinct perspectives. (I) What is DEMS addresses the working principles and key components of DEMS, highlighting the new and distinct instrumental configurations for different applications. (II) How to use DEMS tackles practical matters including the electrochemical test protocols, quantification of both potential and mass signals, and error analysis. (III) Where to apply DEMS is the focus of this review, dealing with concrete examples and unique values of DEMS studies in both energy conversion applications (CO2 reduction, water electrolysis, carbon corrosion, N-related catalysis, electrosynthesis, fuel cells, photo-electrocatalysis and beyond) and energy storage applications (Li-ion batteries and beyond, metal-air batteries, supercapacitors and flow batteries). The recent development of DEMS-hyphenated techniques and the outlook of the DEMS technique are discussed at the end. As DEMS celebrates its 40th anniversary in 2024, we hope this review can offer electrochemistry researchers a comprehensive understanding of the latest developments of DEMS and will inspire them to tackle emerging scientific questions using DEMS.
Collapse
Affiliation(s)
- Kai Zhao
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiaoyi Jiang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiaoyu Wu
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Haozhou Feng
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiude Wang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Yuyan Wan
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Zhiping Wang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
| | - Ning Yan
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| |
Collapse
|
2
|
High-selective and effective carbon nanotubes supported ultrasmall PtPdRh electrocatalysts for ethanol oxidation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Guo Y, Li B, Shen S, Luo L, Wang G, Zhang J. Potential-Dependent Mechanistic Study of Ethanol Electro-oxidation on Palladium. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16602-16610. [PMID: 33788553 DOI: 10.1021/acsami.1c04513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We herein used the density functional theory (DFT) method and the implicit continuum solvation model to study the potential-dependent mechanism of ethanol oxidation reaction (EOR) on palladium (Pd). Energy evolutions of the EOR on low-index Pd surfaces, including (111), (110), and (100), were obtained as a function of the electrode potential. Moreover, the onset potentials for key intermediates and products were calculated. In addition, the potential range for adsorbed ethanol as the most stable adsorption state for proceeding the EOR was determined to be between 0.15 and 0.78 V via the calculated Pourbaix diagrams when considering hydrogen underpotential deposition and Pd(II) oxide formation as competing reactions. Specifically, the behavior of Pd(111) as the dominating facet decided the overall activity of the EOR with onset potentials to acidic acid/acetate at 0.40 V, to carbon dioxide at 0.71 V, and to oxide formation at 0.78 V. Pd(110) was predicted to exhibit the optimal activity toward the EOR with the lowest onset potentials to both the first dehydrogenation process and carbon dioxide at 0.08 and 0.60 V, respectively. A computational potential-dependent mechanism of the EOR was proposed, which agrees well with the experimental curve of linear sweeping voltammetry on the commercial Pd/C electrocatalyst. Our study suggests that targeted control of products can be tuned with proper overpotential and thus provides a foundation for the future development of EOR electrocatalysts.
Collapse
Affiliation(s)
- Yangge Guo
- Institute of Fuel Cells, School of Mechanical Engineering, MOE Key Laboratory of Power & Machinery Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Boyang Li
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Shuiyun Shen
- Institute of Fuel Cells, School of Mechanical Engineering, MOE Key Laboratory of Power & Machinery Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Liuxuan Luo
- Institute of Fuel Cells, School of Mechanical Engineering, MOE Key Laboratory of Power & Machinery Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Guofeng Wang
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Junliang Zhang
- Institute of Fuel Cells, School of Mechanical Engineering, MOE Key Laboratory of Power & Machinery Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| |
Collapse
|
4
|
Palma L, Almeida T, de Andrade A. Comparative study of catalyst effect on ethanol electrooxidation in alkaline medium: Pt- and Pd-based catalysts containing Sn and Ru. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
|
6
|
Monyoncho EA, Steinmann SN, Sautet P, Baranova EA, Michel C. Computational screening for selective catalysts: Cleaving the C C bond during ethanol electro-oxidation reaction. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.102] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Sallum LF, Gonzalez ER, Feliu JM. Potential oscillations during electro-oxidation of ethanol on platinum in alkaline media: The role of surface sites. Electrochem commun 2016. [DOI: 10.1016/j.elecom.2016.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
8
|
Maksić A, Smiljanić M, Miljanić Š, Rakočević Z, Štrbac S. Ethanol Oxidation on Rh/Pd(poly) in Alkaline Solution. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.05.096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Monyoncho EA, Steinmann SN, Michel C, Baranova EA, Woo TK, Sautet P. Ethanol Electro-oxidation on Palladium Revisited Using Polarization Modulation Infrared Reflection Absorption Spectroscopy (PM-IRRAS) and Density Functional Theory (DFT): Why Is It Difficult To Break the C–C Bond? ACS Catal 2016. [DOI: 10.1021/acscatal.6b00289] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Evans A. Monyoncho
- Department
of Chemistry and Biomolecular Sciences, Center for Catalysis Research
and Innovation (CCRI), University of Ottawa, 10 Marie-Curie Private, Ottawa, Ontario K1N 6N5, Canada
- Department
of Chemical and Biological Engineering, (CCRI), University of Ottawa, 161 Louis-Pasteur St., Ottawa, Ontario K1N 6N5, Canada
| | - Stephan N. Steinmann
- Univ
Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342 Lyon, France
| | - Carine Michel
- Univ
Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342 Lyon, France
| | - Elena A. Baranova
- Department
of Chemical and Biological Engineering, (CCRI), University of Ottawa, 161 Louis-Pasteur St., Ottawa, Ontario K1N 6N5, Canada
| | - Tom K. Woo
- Department
of Chemistry and Biomolecular Sciences, Center for Catalysis Research
and Innovation (CCRI), University of Ottawa, 10 Marie-Curie Private, Ottawa, Ontario K1N 6N5, Canada
| | - Philippe Sautet
- Univ
Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342 Lyon, France
| |
Collapse
|
10
|
Wang Y, Jiang K, Cai WB. Enhanced Electrocatalysis of Ethanol on Dealloyed Pd-Ni-P Film in Alkaline Media: an Infrared Spectroelectrochemical Investigation. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2014.11.182] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Farias MJ, Vidal-Iglesias FJ, Solla-Gullón J, Herrero E, Feliu JM. On the behavior of CO oxidation on shape-controlled Pt nanoparticles in alkaline medium. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2013.07.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Yang YY, Ren J, Li QX, Zhou ZY, Sun SG, Cai WB. Electrocatalysis of Ethanol on a Pd Electrode in Alkaline Media: An in Situ Attenuated Total Reflection Surface-Enhanced Infrared Absorption Spectroscopy Study. ACS Catal 2014. [DOI: 10.1021/cs401198t] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yao-Yue Yang
- Shanghai
Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative
Innovation Center for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Jie Ren
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, Department
of Chemistry, College of Chemistry and Chemical Engineering, School
of Energy Research, Xiamen University, Xiamen 361005, China
| | - Qiao-Xia Li
- College
of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhi-You Zhou
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, Department
of Chemistry, College of Chemistry and Chemical Engineering, School
of Energy Research, Xiamen University, Xiamen 361005, China
| | - Shi-Gang Sun
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, Department
of Chemistry, College of Chemistry and Chemical Engineering, School
of Energy Research, Xiamen University, Xiamen 361005, China
| | - Wen-Bin Cai
- Shanghai
Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative
Innovation Center for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
13
|
Gomes J, Profeti D, Deiner LJ. Influence of the Particle Size Distribution on the Activity and Selectivity of Carbon-Supported Platinum Nanoparticle Catalysts for Ethanol Electrooxidation. ChemElectroChem 2013. [DOI: 10.1002/celc.201300060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|