1
|
Grase L, Onufrijevs P, Rezevska D, Racenis K, Skadins I, Karosas J, Gecys P, Iesalnieks M, Pludons A, Kroica J, Raciukaitis G. Effect of Femtosecond Laser-Irradiated Titanium Plates on Enhanced Antibacterial Activity and Preservation of Bacteriophage Stability. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2032. [PMID: 37513043 PMCID: PMC10384951 DOI: 10.3390/nano13142032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Titanium (Ti) is widely recognized for its exceptional properties and compatibility with medical applications. In our study, we successfully formed laser-induced periodic surface structures (LIPSS) on Ti plates with a periodicity of 520-740 nm and a height range of 150-250 nm. To investigate the morphology and chemical composition of these surfaces, we employed various techniques, including field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. Additionally, we utilized a drop-shape analyzer to determine the wetting properties of the surfaces. To evaluate the antibacterial activity, we followed the ISO 22196:2011 standard, utilizing reference bacterial cultures of Gram-positive Staphylococcus aureus (ATCC 25923) and Gram-negative Escherichia coli (ATCC 25922). The results revealed enhanced antibacterial properties against Staphylococcus aureus by more than 99% and Escherichia coli by more than 80% in comparison with non-irradiated Ti. Furthermore, we conducted experiments using the Escherichia coli bacteriophage T4 (ATCC 11303-B4) and the bacterial host Escherichia coli (ATCC 11303) to investigate the impact of Ti plates on the stability of the bacteriophage. Overall, our findings highlight the potential of LIPSS on Ti plates for achieving enhanced antibacterial activity against common bacterial strains while maintaining the stability of bacteriophages.
Collapse
Affiliation(s)
- Liga Grase
- Institute of Materials and Surface Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, 7 Paula Valdena Street, LV-1048 Riga, Latvia
| | - Pavels Onufrijevs
- Institute of Technical Physics, Faculty of Materials Science and Applied Chemistry, Riga Technical University, 7 Paula Valdena Street, LV-1048 Riga, Latvia
| | - Dace Rezevska
- Department of Biology and Microbiology, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| | - Karlis Racenis
- Department of Biology and Microbiology, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| | - Ingus Skadins
- Department of Biology and Microbiology, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| | - Jonas Karosas
- Department of Laser Technologies, Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania
| | - Paulius Gecys
- Department of Laser Technologies, Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania
| | - Mairis Iesalnieks
- Institute of Materials and Surface Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, 7 Paula Valdena Street, LV-1048 Riga, Latvia
| | - Arturs Pludons
- Institute of Materials and Surface Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, 7 Paula Valdena Street, LV-1048 Riga, Latvia
| | - Juta Kroica
- Department of Biology and Microbiology, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| | - Gediminas Raciukaitis
- Department of Laser Technologies, Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania
| |
Collapse
|
3
|
From Bulk to Atoms: The Influence of Particle and Cluster Size on the Hydrogen Evolution Reaction. Z PHYS CHEM 2019. [DOI: 10.1515/zpch-2019-1424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
To investigate the influence of particle size in terms of electrocatalysis for the hydrogen evolution reaction (HER), small Pt
n
species with
n
=
1
,
10
,
13
$n=1,10,13$
atoms and nanoparticles are deposited onto native titanium dioxide. These species are compared to the bare support as well as to bulk platinum with respect to the catalytic activity. Photoelectron spectroscopy showed Pt4f core-level shifts to higher binding energies with decreasing cluster size. In addition, the various species contribute significant density of states into the valence band gap of TiO2, thereby with larger particle size, the resulting band gap narrows. For nanoparticles, metal-like behaviour was already observed. Electrochemical measurements in 0.1 M H2SO4 showed the highest overall catalytic activity for bulk platinum and large Pt nanoparticles. A different assertion is obtained when the activities are related to the mass of the catalyst used, indicating that clusters with a size of about ten atoms seem to be most active. In comparison with the results from photoelectron spectroscopy regarding the electronic structure, no clear correlation to the catalytic activity was found. In terms of degradation induced due to the electrochemical treatment, the cluster samples showed no sintering effects, but instead, some detachment took place.
Collapse
|
4
|
Proch S, Yoshino S, Kitazumi K, Seki J, Kodama K, Morimoto Y. Over-Potential Deposited Hydrogen (Hopd) as Terminating Agent for Platinum and Gold Electro(co)Deposition. Electrocatalysis (N Y) 2019. [DOI: 10.1007/s12678-019-00551-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Hydrogen Treatment as Potential Protection of Electrodeposited Pt, Au, and Pt/Au Oxygen Reduction Catalysts on TiOx. Electrocatalysis (N Y) 2018. [DOI: 10.1007/s12678-018-0489-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|