Marken F, Carta M, McKeown NB. Polymers of Intrinsic Microporosity in the Design of Electrochemical Multicomponent and Multiphase Interfaces.
Anal Chem 2021;
93:1213-1220. [PMID:
33369401 DOI:
10.1021/acs.analchem.0c04554]
[Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polymers of intrinsic microporosity (or PIMs) provide porous materials due to their highly contorted and rigid macromolecular structures, which prevent space-efficient packing. PIMs are readily dissolved in solvents and can be cast into robust microporous coatings and membranes. With a typical micropore size range of around 1 nm and a typical surface area of 700-1000 m2 g-1, PIMs offer channels for ion/molecular transport and pores for gaseous species, solids, and liquids to coexist. Electrode surfaces are readily modified with coatings or composite films to provide interfaces for solid|solid|liquid or solid|liquid|liquid or solid|liquid|gas multiphase electrode processes.
Collapse