1
|
Ugartemendia A, Mercero JM, de Cózar A, Jimenez-Izal E. Does the Composition in PtGe Clusters Play any Role in Fighting CO Poisoning?. J Chem Phys 2022; 156:174301. [DOI: 10.1063/5.0089179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The high catalytic activity of Pt is accompanied by a high affinity for CO, making it extremely susceptible to poisoning. Such CO poisoning limits the use of proton exchange membrane fuel cells. In this work, using state-of-the-art global minima search techniques and exhaustive electronic structure characterization, the dopant concentration is pinpointed as a crucial factor to improve the CO tolerance of Pt catalysts. By investigating PtGe nanoclusters of different size and composition we found that, for those clusters with roughly the same amount of Pt and Ge, the binding to CO is weakened significantly. The uniqueness of the PtGe equimolar clusters is traced down to the electronic effects. The strong covalency and electrostatic stabilization arising from the advantageous Pt-Ge mixing, make the equimolar clusters highly resistant towards CO poisoning and therefore, more durable. Importantly, the novel catalysts are not only more resistant to deactivation, but they remain catalytically active towards hydrogen oxidation. Representative clusters are additionally deposited on graphene with a pentagon-octagon-pentagon (5-8-5) reconstructed divacancy. The remarkable results of free-standing clusters hold true for surface mounted clusters, in which the interaction with CO is dramatically weakened for those compounds with 1:1 Pt:Ge ratio. Our results demonstrate that Ge can be a promising alloying agent to mitigate the deactivation of Pt and that the dopant concentration is a critical factor in the design of advanced catalysts.
Collapse
Affiliation(s)
- Andoni Ugartemendia
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, University of the Basque Country - Gipuzkoa Campus, Spain
| | - Jose M Mercero
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Spain
| | - Abel de Cózar
- Organic Chemistry I, University of the Basque Country - Gipuzkoa Campus, Spain
| | | |
Collapse
|
2
|
Shih KY, Wei JJ, Tsai MC. One-Step Microwave-Assisted Synthesis of PtNiCo/rGO Electrocatalysts with High Electrochemical Performance for Direct Methanol Fuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2206. [PMID: 34578522 PMCID: PMC8467967 DOI: 10.3390/nano11092206] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 11/22/2022]
Abstract
Platinum (Pt) is widely used as an activator in direct methanol fuel cells (DMFCs). However, the development of Pt catalyst is hindered due to its high cost and CO poisoning. A multi-metallic catalyst is a promising catalyst for fuel cells. We develop a simple and rapid method to synthesize PtNiCo/rGO nanocomposites (NCs). The PtNiCo/rGO NCs catalyst was obtained by microwave-assisted synthesis of graphene oxide (GO) with Pt, Ni, and Co precursors in ethylene glycol (EG) solution after heating for 20 min. The Pt-Ni-Co nanoparticles showed a narrow particle size distribution and were uniformly dispersed on the reduced graphene oxide without agglomeration. Compared with PtNiCo catalyst, PtNiCo/rGO NCs have superior electrocatalytic properties, including a large electrochemical active surface area (ECSA), the high catalytic activity of methanol, excellent anti-toxic properties, and high electrochemical stability. The ECSA can be up to 87.41 m2/g at a scan rate of 50 mV/s. They also have the lowest oxidation potential of CO. These excellent electrochemical performances are attributed to the uniform dispersion of PtNiCo nanoparticles, good conductivity, stability, and large specific surface area of the rGO carrier. The synthesized PtNiCo/rGO nanoparticles have an average size of 17.03 ± 1.93 nm. We also investigated the effect of catalyst material size on electrocatalytic performance, and the results indicate that PtNiCo/rGO NC catalysts can replace anode catalyst materials in fuel cell applications in the future.
Collapse
Affiliation(s)
- Kun-Yauh Shih
- Department of Applied Chemistry, National Pingtung University, Pingtung County 90003, Taiwan; (J.-J.W.); (M.-C.T.)
| | | | | |
Collapse
|
3
|
Ugartemendia A, Peeters K, Ferrari P, de Cózar A, Mercero JM, Janssens E, Jimenez-Izal E. Doping Platinum with Germanium: An Effective Way to Mitigate the CO Poisoning. Chemphyschem 2021; 22:1603-1610. [PMID: 34058042 DOI: 10.1002/cphc.202100407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 11/12/2022]
Abstract
The vulnerability towards CO poisoning is a major drawback affecting the efficiency and long-term performance of platinum catalysts in fuel cells. In the present work, by a combination of density functional theory calculations and mass spectrometry experiments, we test and explain the promotional effect of Ge on Pt catalysts with higher resistance to deactivation via CO poisoning. A thorough exploration of the configurational space of gas-phase Ptn + and GePtn-1 + (n=5-9) clusters using global minima search techniques and the subsequent electronic structure analysis reveals that germanium doping reduces the binding strength between Pt and CO by hindering the 2π-back-donation. Importantly, the clusters remain catalytically active towards H2 dissociation. The ability of Ge to weaken the Pt-CO interaction was confirmed by mass spectrometry experiments. Ge can be a promising alloying agent to tune the selectivity and improve the durability of Pt particles, thus opening the way to novel catalytic alternatives for fuel cells.
Collapse
Affiliation(s)
- Andoni Ugartemendia
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), M. de Lardizabal Pasealekua 3, Donostia, Euskadi, Spain
| | - Kristien Peeters
- Quantum Solid-State Physics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | - Piero Ferrari
- Quantum Solid-State Physics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | - Abel de Cózar
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), M. de Lardizabal Pasealekua 3, Donostia, Euskadi, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Euskadi, Spain
| | - Jose M Mercero
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), M. de Lardizabal Pasealekua 3, Donostia, Euskadi, Spain
| | - Ewald Janssens
- Quantum Solid-State Physics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | - Elisa Jimenez-Izal
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), M. de Lardizabal Pasealekua 3, Donostia, Euskadi, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Euskadi, Spain
| |
Collapse
|
4
|
Liang J, Jia W, Sun Y, Wang Q. Skeletal chemical kinetic mechanism generation for methanol combustion and systematic analysis on the ignition characteristics. ASIA-PAC J CHEM ENG 2020. [DOI: 10.1002/apj.2434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jinhu Liang
- School of Environment and Safety EngineeringNorth University of China Taiyuan China
| | - Wenlin Jia
- School of Environment and Safety EngineeringNorth University of China Taiyuan China
| | - Yanjin Sun
- Combustion Chemistry Centre, School of Chemistry, Ryan InstituteNational University of Ireland Galway Ireland
| | - Quan‐De Wang
- Low Carbon Energy Institute and School of Chemical EngineeringChina University of Mining and Technology Xuzhou China
| |
Collapse
|