1
|
Zhang C, Li Y, Si H, Du H, Lv L, Xu B, Deng Y, Li J, Yang H, Zhou Y, Wang B. A portable colorimetric immunosensor for highly sensitive point-of-care testing of leather artifacts. Mikrochim Acta 2024; 191:764. [PMID: 39601921 DOI: 10.1007/s00604-024-06842-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
A point-of-care testing (POCT) platform, i.e., a portable colorimetric immunosensor based on iron oxide magnetic beads and AuNPs, has been developed for detecting leather residues. The immunosensor demonstrates a linear detection range from 1 ng/mL to 10 µg/mL, with a limit of detection (LOD) of 0.985 ng/mL. The sensor exhibits high specificity and repeatability and performs effectively in detecting leather artifacts excavated from Inner Mongolia. Thus, the proposed colorimetric immunosensor not only enables the micro-detection of leather artifacts but also shows significant potential for on-site leather detection at archaeological sites.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yichang Li
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hui Si
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hao Du
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Lianpeng Lv
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Bing Xu
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yefeng Deng
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Junting Li
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hailiang Yang
- Key Scientific Research Base of Textile Conservation, State Administration for Cultural Heritage, China National Silk Museum, Hangzhou, 310002, China
| | - Yang Zhou
- Key Scientific Research Base of Textile Conservation, State Administration for Cultural Heritage, China National Silk Museum, Hangzhou, 310002, China
| | - Bing Wang
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
- Institute of Textile Conservation, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Afshari Babazad M, Foroozandeh A, Abdouss M, SalarAmoli H, Babazad RA, Hasanzadeh M. Recent progress and challenges in biosensing of carcinoembryonic antigen. Trends Analyt Chem 2024; 180:117964. [DOI: 10.1016/j.trac.2024.117964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Yang Y, Liu Y, Song L, Cui X, Zhou J, Jin G, Boccaccini AR, Virtanen S. Iron oxide nanoparticle-based nanocomposites in biomedical application. Trends Biotechnol 2023; 41:1471-1487. [PMID: 37407395 DOI: 10.1016/j.tibtech.2023.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 07/07/2023]
Abstract
Iron-oxide-based biomagnetic nanocomposites, recognized for their significant properties, have been utilized in MRI and cancer treatment for several decades. The expansion of clinical applications is limited by the occurrence of adverse effects. These limitations are largely attributed to suboptimal material design, resulting in agglomeration, reduced magnetic relaxivity, and inadequate functionality. To address these challenges, various synthesis methods and modification strategies have been used to tailor the size, shape, and properties of iron oxide nanoparticle (FeONP)-based nanocomposites. The resulting modified nanocomposites exhibit significant potential for application in diagnostic, therapeutic, and theranostic contexts, including MRI, drug delivery, and anticancer and antimicrobial activity. Yet, their biosafety profile must be rigorously evaluated. Such efforts will facilitate the broader clinical translation of FeONP-based nanocomposites in biomedical applications.
Collapse
Affiliation(s)
- Yuyun Yang
- Institute of Corrosion Science and Surface Technology, Department of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 15001, China.
| | - Yuejun Liu
- Institute of Corrosion Science and Surface Technology, Department of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 15001, China
| | - Laiming Song
- Institute of Corrosion Science and Surface Technology, Department of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 15001, China
| | - Xiufang Cui
- Institute of Corrosion Science and Surface Technology, Department of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 15001, China
| | - Juncen Zhou
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Guo Jin
- Institute of Corrosion Science and Surface Technology, Department of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 15001, China
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Sannakaisa Virtanen
- Institute of Surface Science and Corrosion, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
4
|
Wei G, Fan Q, Hong N, Cui H, Zhang W, Rustam M, Alim A, Jiang T, Dong H, Fan H. A Reagentless Aptamer Sensor Based on a Self-Powered DNA Machine for Electrochemical Detection of AFB1. Electrocatalysis (N Y) 2023. [DOI: 10.1007/s12678-023-00819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
5
|
Manaf BAA, Hong SP, Rizwan M, Arshad F, Gwenin C, Ahmed MU. Recent advancement in sensitive detection of carcinoembryonic antigen using nanomaterials based immunosensors. SURFACES AND INTERFACES 2023; 36:102596. [DOI: 10.1016/j.surfin.2022.102596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
6
|
Gu Y, Jiang Y, Gong G, Cheng X, Mei Y, Pan H, Han J. Detection of CYFRA21-1 in serum by electrochemical immunosensor based on nanocomposite consisting of AuNPs@CMK-3@CMWCNTs. Bioelectrochemistry 2022; 148:108230. [PMID: 36029760 DOI: 10.1016/j.bioelechem.2022.108230] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022]
Abstract
An electrochemical immunosensor based on the modification of nanocomposite was constructed to detect the lung cancer marker Cytokeratin 19 fragment antigen 21-1 (CYFRA21-1). Ordered mesoporous carbon CMK-3 was selected to mix with carboxylated multi-walled carbon nanotubes (CMWCNTs), and their combination could enhance electron transfer efficiency and amplify the electrochemical signal. Furthermore, aurum nanoparticles (AuNPs) were further mixed with the hybrid carbon nanomaterials, which bind antibodies via Au-S bonds and provide numerous of binding sites for antibodies. Finally, CYFRA21-1 could be detected by specific immune response between antigen and antibody by improving the immunosensor sensitivity. The characterization of scanning electron microscopy (SEM) showed that AuNPs were embedded on the surface and interstices of CMK-3@CMWCNTs. The curves of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) showed that the immunsensor was successfully constructed. The constructed immunosensor had a linear range of 0.5 pg/mL to 105 pg/mL for the detection of CYFRA21-1 in serum, and the correlation coefficient (r) was 0.998, with a detection limit of 0.2 pg/mL. Thus, this method is selective and sensitive for getting the accurate and reliable detection results and provides a new method for the CYFRA21-1 ultrasensitive detection in serum.
Collapse
Affiliation(s)
- Yingying Gu
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei 430065, PR China; College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430065, PR China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei 430065, PR China
| | - Yuting Jiang
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei 430065, PR China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei 430065, PR China
| | - Guoao Gong
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei 430065, PR China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei 430065, PR China
| | - Xiong Cheng
- School of Public Health, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yong Mei
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei 430065, PR China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei 430065, PR China
| | - Hongzhi Pan
- The Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health, Sciences, Shanghai 201318, PR China.
| | - Jun Han
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430065, PR China.
| |
Collapse
|
7
|
Aquino A, Paschoalin VMF, Tessaro LLG, Raymundo-Pereira PA, Conte-Junior CA. Updating the use of nano-biosensors as promising devices for the diagnosis of coronavirus family members: A systematic review. J Pharm Biomed Anal 2022; 211:114608. [PMID: 35123330 PMCID: PMC8788102 DOI: 10.1016/j.jpba.2022.114608] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 12/29/2022]
Abstract
Coronavidae viruses, such as SARS-CoV, SARS-CoV-2, and MERS-CoV, cause severe lower respiratory tract infection, acute respiratory distress syndrome and extrapulmonary manifestations, such as diarrhea and fever, eventually leading to death. Fast, accurate, reproductible, and cost-effective SARS-CoV-2 identification can be achieved employing nano-biosensors, reinforcing conventional methodologies to avoid the spread of COVID-19 within and across communities. Nano-biosensors built using gold, silver, graphene, In2O3 nanowire and iron oxide nanoparticles, Quantum Dots and carbon nanofibers have been successfully employed to detect specific virus antigens - nucleic acid sequences and/or proteins -or host antibodies produced in response to viral infection. Biorecognition counterpart molecules have been immobilized on the surface of these nanomaterials, leading to selective virus detection by optical or electrochemical transducer systems. This systematic review assessed studies on described and tested immunonsensors and genosensors designed from distinct nanomaterials available at the Pubmed, Scopus, and Science Direct databases. Twenty-three nano biosensors were found suitable for unequivocal coronavirus detection in clinical samples. Nano-biosensors coupled to RT-LAMP/RT-PCR assays can optimize RNA extraction, reduce analysis times and/or eliminate sophisticated instrumentation. Although promising for the diagnosis of Coronavidae family members, further trials in large populations must be adequately and rigorously conducted to address nano-biosensor applicability in the clinical practice for early coronavirus infection detection.
Collapse
Affiliation(s)
- Adriano Aquino
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Graduate Program in Chemistry (PGQu), Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ 20020-000, Brazil
| | - Vania Margaret Flosi Paschoalin
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Graduate Program in Chemistry (PGQu), Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ 20020-000, Brazil
| | - Leticia Louize Gonçalves Tessaro
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Graduate Program in Chemistry (PGQu), Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ 20020-000, Brazil
| | | | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ 24230-340, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil; Graduate Program in Chemistry (PGQu), Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ 20020-000, Brazil.
| |
Collapse
|
8
|
Xiao H, Cao L, Qin H, Wei S, Gu M, Zhao F, Chen Z. Non-enzymatic lactic acid sensor based on AuPtNPs functionalized MoS2 nanosheet as electrode modified materials. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Xiao H, Wei S, Gu M, Chen Z, Cao L. A sandwich-type electrochemical immunosensor using rGO-TEPA-Thi-Au as sensitive platform and CMK-3@AuPtNPs as signal probe for AFP detection. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Label-free electrochemical-immunoassay of cancer biomarkers: Recent progress and challenges in the efficient diagnosis of cancer employing electroanalysis and based on point of care (POC). Microchem J 2021. [DOI: 10.1016/j.microc.2021.106424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Ozoemena OC, Ehirim TJ, Khawula T, Makgopa K, Shai LJ, Ozoemena KI. Bovine Serum Albumin-Dependent Charge-Transfer Kinetics Controls the Electrochemical Immunosensitive Detection: Vibrio cholerae as a Model Bioanalyte. Electrocatalysis (N Y) 2021; 12:595-604. [PMID: 34122666 PMCID: PMC8187457 DOI: 10.1007/s12678-021-00673-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2021] [Indexed: 11/25/2022]
Abstract
This work investigates how bovine serum albumin (BSA), a commonly used protein in the fabrication of electrochemical immunosensors, can impact on the sensitivity of detection when integrated with antibody (Ab) pre-encapsulated with (i) insulating polyacrylonitrile (PAN) fibre (i.e., GCE-PAN-Ab-BSA immunosensor) or (ii) conducting PAN-grafted iron (II) phthalocyanine (FePc) (i.e., GCE-PAN@FePc-Ab-BSA immunosensor), using Vibrio cholerae toxin as a case study bioanalyte. Both immunosensors show different charge-transfer kinetics that strongly impact on their immunosensitive detection. From the electrochemical data, GCE-PAN-Ab-BSA is more insulating with the presence of BSA, while the GCE-PAN@FePc-Ab-BSA is more conducting with BSA. The CV of the GCE-PAN-Ab-BSA is dominated by radial diffusion process, while that of the GCE-PAN@FePc-Ab-BSA is planar diffusion process. The behaviour of GCE-PAN@FePc-Ab-BSA has been associated with the facile coordination of BSA and FePc that permits co-operative charge-transport of the redox probe, while that of the GCE-PAN-Ab-BSA is related to the interaction-induced PAN-BSA insulating state that suppresses charge-transport. As a consequence of these different interaction processes, GCE-PAN-Ab-BSA immunosensor provides higher electroanalytical performance for the detection of Vibrio cholerae toxin (with sensitivity of 16.12 Ω/log [VCT, g/mL] and limit of detection (LoD) of 3.20 × 10-13 g/mL compared to those of the GCE-PAN@FePc-Ab-BSA (4.16 Ω/log (VCT, g mL-1) and 2.00 × 10-12 g/mL). The study confirms the need for a thorough understanding of the physico-chemistries of the electrode platforms for the construction of immunosensors. Although this work is on immunosensors for cholera infection, it may well apply to other immunosensors. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Okoroike C. Ozoemena
- Department of Biomedical Sciences, Faculty of Science, Tshwane University of Technology, Pretoria, 0001 South Africa
| | - Tobechukwu J. Ehirim
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050 South Africa
| | - Tobile Khawula
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050 South Africa
| | - Katlego Makgopa
- Department of Chemistry, Faculty of Science, Tshwane University of Technology, Pretoria, 0001 South Africa
| | - Leshweni J. Shai
- Department of Biomedical Sciences, Faculty of Science, Tshwane University of Technology, Pretoria, 0001 South Africa
| | - Kenneth I. Ozoemena
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050 South Africa
| |
Collapse
|
12
|
Norouzi P, Nezamoddini M, Safarnejad MR. Antibody-oriented immobilization for newcastle disease virus detection using label free electrochemical immunosensor. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01546-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|