1
|
He Y, Zhou X, Jia Y, Li H, Wang Y, Liu Y, Tan Q. Advances in Transition-Metal-Based Dual-Atom Oxygen Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206477. [PMID: 37147778 DOI: 10.1002/smll.202206477] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/31/2023] [Indexed: 05/07/2023]
Abstract
Oxygen electrocatalysis has aroused considerable interest over the past years because of the new energy technologies boom in hydrogen energy and metal-air battery. However, due to the sluggish kinetic of the four-electron transfer process in oxygen reduction reaction and oxygen evolution reaction, the electro-catalysts are urgently needed to accelerate the oxygen electrocatalysis. Benefit from the high atom utilization efficiency, unprecedentedly high catalytic activity, and selectivity, single-atom catalysts (SACs) are considered the most promising candidate to replace the traditional Pt-group-metal catalysts. Compared with SACs, the dual-atom catalysts (DACs) are attracting more attraction including higher metal loading, more versatile active sites, and excellent catalytic activity. Therefore, it is essential to explore the new universal methods approaching to the preparation, characterization, and to elucidate the catalytic mechanisms of the DACs. In this review, several general synthetic strategies and structural characterization methods of DACs are introduced and the involved oxygen catalytic mechanisms are discussed. Moreover, the state-of-the-art electrocatalytic applications including fuel cells, metal-air batteries, and water splitting have been sorted out at present. The authors hope this review has given some insights and inspiration to the researches about DACs in electro-catalysis.
Collapse
Affiliation(s)
- Yuting He
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Xingchen Zhou
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yufei Jia
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Hongtao Li
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yi Wang
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yongning Liu
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Qiang Tan
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| |
Collapse
|
2
|
Wang Y, Zhang M, Kang Z, Shi L, Shen Y, Tian B, Zou Y, Chen H, Zou X. Nano-metal diborides-supported anode catalyst with strongly coupled TaO x/IrO 2 catalytic layer for low-iridium-loading proton exchange membrane electrolyzer. Nat Commun 2023; 14:5119. [PMID: 37612274 PMCID: PMC10447464 DOI: 10.1038/s41467-023-40912-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
The sluggish kinetics of oxygen evolution reaction (OER) and high iridium loading in catalyst coated membrane (CCM) are the key challenges for practical proton exchange membrane water electrolyzer (PEMWE). Herein, we demonstrate high-surface-area nano-metal diborides as promising supports of iridium-based OER nanocatalysts for realizing efficient, low-iridium-loading PEMWE. Nano-metal diborides are prepared by a novel disulphide-to-diboride transition route, in which the entropy contribution to the Gibbs free energy by generation of gaseous sulfur-containing products plays a crucial role. The nano-metal diborides, TaB2 in particular, are investigated as the support of IrO2 nanocatalysts, which finally forms a TaOx/IrO2 heterojunction catalytic layer on TaB2 surface. Multiple advantageous properties are achieved simultaneously by the resulting composite material (denoted as IrO2@TaB2), including high electrical conductivity, improved iridium mass activity and enhanced corrosion resistance. As a consequence, the IrO2@TaB2 can be used to fabricate the membrane electrode with a low iridium loading of 0.15 mg cm-2, and to give an excellent catalytic performance (3.06 A cm-2@2.0 V@80 oC) in PEMWE-the one that is usually inaccessible by unsupported Ir-based nanocatalysts and the vast majority of existing supported Ir-based catalysts at such a low iridium loading.
Collapse
Affiliation(s)
- Yuannan Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Mingcheng Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhenye Kang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Lei Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yucheng Shen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Boyuan Tian
- State Key Laboratory of Advanced Transmission Technology (State Grid Smart Grid Research Institute Company Limited), Beijing, 102209, China
| | - Yongcun Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Hui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
3
|
Eliminating the need for craftsmanship: Facile and precise determination of oxygen reduction reaction activity by spraying catalyst ink on rotating disk electrode. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|