1
|
Xie Z, Weng L, He J, Feng X, Xu X, Ma Y, Bai P, Kong Q. PNNGS, a multi-convolutional parallel neural network for genomic selection. FRONTIERS IN PLANT SCIENCE 2024; 15:1410596. [PMID: 39290743 PMCID: PMC11405342 DOI: 10.3389/fpls.2024.1410596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024]
Abstract
Genomic selection (GS) can accomplish breeding faster than phenotypic selection. Improving prediction accuracy is the key to promoting GS. To improve the GS prediction accuracy and stability, we introduce parallel convolution to deep learning for GS and call it a parallel neural network for genomic selection (PNNGS). In PNNGS, information passes through convolutions of different kernel sizes in parallel. The convolutions in each branch are connected with residuals. Four different Lp loss functions train PNNGS. Through experiments, the optimal number of parallel paths for rice, sunflower, wheat, and maize is found to be 4, 6, 4, and 3, respectively. Phenotype prediction is performed on 24 cases through ridge-regression best linear unbiased prediction (RRBLUP), random forests (RF), support vector regression (SVR), deep neural network genomic prediction (DNNGP), and PNNGS. Serial DNNGP and parallel PNNGS outperform the other three algorithms. On average, PNNGS prediction accuracy is 0.031 larger than DNNGP prediction accuracy, indicating that parallelism can improve the GS model. Plants are divided into clusters through principal component analysis (PCA) and K-means clustering algorithms. The sample sizes of different clusters vary greatly, indicating that this is unbalanced data. Through stratified sampling, the prediction stability and accuracy of PNNGS are improved. When the training samples are reduced in small clusters, the prediction accuracy of PNNGS decreases significantly. Increasing the sample size of small clusters is critical to improving the prediction accuracy of GS.
Collapse
Affiliation(s)
- Zhengchao Xie
- Research Center for Life Sciences Computing, Zhejiang Laboratory, Hangzhou, China
| | - Lin Weng
- Research Center for Life Sciences Computing, Zhejiang Laboratory, Hangzhou, China
| | - Jingjing He
- Research Center for Life Sciences Computing, Zhejiang Laboratory, Hangzhou, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Xiaogang Xu
- School of Computer Science and Technology, Zhejiang Gongshang University, Hangzhou, China
| | - Yinxing Ma
- Research Center for Life Sciences Computing, Zhejiang Laboratory, Hangzhou, China
| | - Panpan Bai
- Research Center for Life Sciences Computing, Zhejiang Laboratory, Hangzhou, China
| | - Qihui Kong
- Research Center for Life Sciences Computing, Zhejiang Laboratory, Hangzhou, China
| |
Collapse
|
2
|
Du J, Li S, Shao J, Song H, Jiang P, Lei C, Bai J, Han L. Genetic diversity analysis and development of molecular markers for the identification of largemouth bass (Micropterus salmoides L.) based on whole-genome re-sequencing. Front Genet 2022; 13:936610. [PMID: 36105092 PMCID: PMC9465168 DOI: 10.3389/fgene.2022.936610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/21/2022] [Indexed: 11/28/2022] Open
Abstract
Largemouth bass (Micropterus salmoides L.) is generally considered to comprise two subspecies, Florida bass (M. floridanus) and Northern Largemouth bass (M. salmoides), which have biological characteristic differences because of their geographical distribution. In this study, whole-genome re-sequencing was performed among 10 Florida and 10 Northern largemouth bass, respectively. In total, 999,793 SNPs and 227,797 InDels were finally identified, and 507,401 SNPs (50.75%) and 116,213 InDels (51.01%) were successfully mapped to annotated 18,629 genes and 14,060 genes, respectively. KEGG classification indicated that most of these genes were focused on the pathways including signal transduction, transport and catabolism, and endocrine system. Genetic diversity analysis indicated that Florida largemouth bass had higher genetic diversity than Northern largemouth bass, indicating that the germplasm quality of Northern largemouth bass had markedly reduced in China. To examine the accuracies of the identified markers, 23 SNPs and eight InDels (the insertions or deletions of more than 45 bp) were randomly selected and detected among Florida largemouth bass, Northern largemouth bass, and their F1 hybrids. The detection efficiencies of all the markers were higher than 95%; nineteen SNPs and three InDels could accurately distinguish the two subspecies and their F1 hybrids with 100% efficiencies. Moreover, the three InDel markers could clearly distinguish the two subspecies and their F1 hybrids with a PCR-based agarose gel electrophoresis. In conclusion, our study established a simple PCR-based method for the germplasm identification of largemouth bass, which will be useful in the germplasm protection, management, and hybridization breeding of largemouth bass.
Collapse
Affiliation(s)
- Jinxing Du
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Shengjie Li
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- *Correspondence: Shengjie Li,
| | - Jiaqi Shao
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Hongmei Song
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Peng Jiang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Caixia Lei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Junjie Bai
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Linqiang Han
- Guangdong Liangshi Aquatic Seed Industry Co Ltd, Foshan, China
| |
Collapse
|
3
|
Chang SL, Ward HGM, Elliott LD, Russello MA. Genotyping-in-Thousands by sequencing panel development and application for high-resolution monitoring of introgressive hybridization within sockeye salmon. Sci Rep 2022; 12:3441. [PMID: 35236892 PMCID: PMC8891347 DOI: 10.1038/s41598-022-07309-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/17/2022] [Indexed: 11/09/2022] Open
Abstract
Stocking programs have been widely implemented to re-establish extirpated fish species to their historical ranges; when employed in species with complex life histories, such management activities should include careful consideration of resulting hybridization dynamics with resident stocks and corresponding outcomes on recovery initiatives. Genetic monitoring can be instrumental for quantifying the extent of introgression over time, however conventional markers typically have limited power for the identification of advanced hybrid classes, especially at the intra-specific level. Here, we demonstrate a workflow for developing, evaluating and deploying a Genotyping-in-Thousands by Sequencing (GT-seq) SNP panel with the power to detect advanced hybrid classes to assess the extent and trajectory of intra-specific hybridization, using the sockeye salmon (Oncorhynchus nerka) stocking program in Skaha Lake, British Columbia as a case study. Previous analyses detected significant levels of hybridization between the anadromous (sockeye) and freshwater resident (kokanee) forms of O. nerka, but were restricted to assigning individuals to pure-stock or “hybrid”. Simulation analyses indicated our GT-seq panel had high accuracy, efficiency and power (> 94.5%) of assignment to pure-stock sockeye salmon/kokanee, F1, F2, and B2 backcross-sockeye/kokanee. Re-analysis of 2016/2017 spawners previously analyzed using TaqMan® assays and otolith microchemistry revealed shifts in assignment of some hybrids to adjacent pure-stock or B2 backcross classes, while new assignment of 2019 spawners revealed hybrids comprised 31% of the population, ~ 74% of which were B2 backcross or F2. Overall, the GT-seq panel development workflow presented here could be applied to virtually any system where genetic stock identification and intra-specific hybridization are important management parameters.
Collapse
Affiliation(s)
- Sarah L Chang
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Hillary G M Ward
- Lands and Natural Resource Operations and Rural Development, British Columbia Ministry of Forests, Penticton, BC, Canada
| | - Lucas D Elliott
- Department of Biology, University of British Columbia, Kelowna, BC, Canada.,UiT The Arctic University of Norway, Tromsø, Norway
| | - Michael A Russello
- Department of Biology, University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
4
|
Genomic Hatchery Introgression in Brown Trout (Salmo trutta L.): Development of a Diagnostic SNP Panel for Monitoring the Impacted Mediterranean Rivers. Genes (Basel) 2022; 13:genes13020255. [PMID: 35205298 PMCID: PMC8872556 DOI: 10.3390/genes13020255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Brown trout (Salmo trutta L.) populations have been restocked during recent decades to satisfy angling demand and counterbalance the decline of wild populations. Millions of fertile brown trout individuals were released into Mediterranean and Atlantic rivers from hatcheries with homogeneous central European stocks. Consequently, many native gene pools have become endangered by introgressive hybridization with those hatchery stocks. Different genetic tools have been used to identify and evaluate the degree of introgression starting from pure native and restocking reference populations (e.g., LDH-C* locus, microsatellites). However, due to the high genetic structuring of brown trout, the definition of the "native pool" is hard to achieve. Additionally, although the LDH-C* locus is useful for determining the introgression degree at the population level, its consistency at individual level is far from being accurate, especially after several generations were since releases. Accordingly, the development of a more powerful and cost-effective tool is essential for an appropriate monitoring to recover brown-trout-native gene pools. Here, we used the 2b restriction site-associated DNA sequencing (2b-RADseq) and Stacks 2 with a reference genome to identify single-nucleotide polymorphisms (SNPs) diagnostic for hatchery-native fish discrimination in the Atlantic and Mediterranean drainages of the Iberian Peninsula. A final set of 20 SNPs was validated in a MassARRAY® System genotyping by contrasting data with the whole SNP dataset using samples with different degree of introgression from those previously recorded. Heterogeneous introgression impact was confirmed among and within river basins, and was the highest in the Mediterranean Slope. The SNP tool reported here should be assessed in a broader sample scenario in Southern Europe considering its potential for monitoring recovery plans.
Collapse
|
5
|
Silliman K, Zhao H, Justice M, Thongda W, Bowen B, Peatman E. Complex introgression among three diverged largemouth bass lineages. Evol Appl 2021; 14:2815-2830. [PMID: 34950231 PMCID: PMC8674896 DOI: 10.1111/eva.13314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/21/2021] [Accepted: 10/14/2021] [Indexed: 12/30/2022] Open
Abstract
Hybrid zones between diverged lineages offer a unique opportunity to study evolutionary processes related to speciation. Natural and anthropogenic hybridization in the black basses (Micropterus spp.) is well documented, including an extensive intergrade zone between the widespread northern Largemouth Bass (M. salmoides) and the Florida Bass (M. floridanus). Phenotypic surveys have identified an estuarine population of Largemouth Bass (M. salmoides) in the Mobile-Tensaw Delta, with larger relative weight and smaller adult size compared to inland populations, suggesting a potential third lineage of largemouth bass. To determine the evolutionary relationships among these Mobile Delta bass populations, M. salmoides and M. floridanus, putative pure and intergrade populations of all three groups were sampled across the eastern United States. Phylogenetic analyses of 8582 nuclear SNPs derived from genotype-by-sequencing and the ND2 mitochondrial gene determined that Delta bass populations stem from a recently diverged lineage of Largemouth Bass. Using a novel quantitative pipeline, a panel of 73 diagnostic SNPs was developed for the three lineages, evaluated for accuracy, and then used to screen 881 samples from 52 sites for genetic integrity and hybridization on the Agena MassARRAY platform. These results strongly support a redrawing of native ranges for both the intergrade zone and M. floridanus, which has significant implications for current fisheries management. Furthermore, Delta bass ancestry was shown to contribute significantly to the previously described intergrade zone between northern Largemouth Bass and Florida Bass, suggesting a more complex pattern of secondary contact and introgression among these diverged Micropterus lineages.
Collapse
Affiliation(s)
- Katherine Silliman
- School of Fisheries, Aquaculture, and Aquatic SciencesAuburn UniversityAuburnAlabamaUSA
| | - Honggang Zhao
- Department of Natural ResourcesCornell UniversityIthacaNew YorkUSA
| | - Megan Justice
- School of Fisheries, Aquaculture, and Aquatic SciencesAuburn UniversityAuburnAlabamaUSA
| | - Wilawan Thongda
- Center of Excellence for Shrimp Molecular Biology and Biology (CENTEX Shrimp)Faculty of ScienceMahidol UniversityBangkokThailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA)Pathum ThaniThailand
| | - Bryant Bowen
- Georgia Department of Natural ResourcesSocial CircleGeorgiaUSA
| | - Eric Peatman
- School of Fisheries, Aquaculture, and Aquatic SciencesAuburn UniversityAuburnAlabamaUSA
| |
Collapse
|
6
|
A Case of Mistaken Identity: Genetic and Morphological Evidence for the Presence of Redeye Bass in the Verde River, Arizona. JOURNAL OF FISH AND WILDLIFE MANAGEMENT 2021. [DOI: 10.3996/jfwm-21-013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Abstract
We report genetic and morphological evidence for the presence of Redeye Bass Micropterus coosae, in the Verde River of Arizona, previously thought to be Smallmouth Bass Micropterus dolomieu. We performed meristic measurements on 15 individuals sampled from the Upper Verde River Wildlife Area, Yavapai County, Arizona. Meristic data for lateral line scales, scales above lateral line, and scales below lateral line were all consistent with Redeye Bass and not Smallmouth Bass. We analyzed mitochondrial and nuclear genetic data to determine whether one of the black bass (Genus Micropterus) species historically introduced to the Verde River was Redeye Bass and whether they persist in the system. We extracted DNA from fin clips of five individuals for phylogenetic analysis of the nicotinamide adenine dinucleotide + hydrogen (NADH) dehydrogenase subunit 2 (ND2) mitochondrial gene and for analysis of nuclear DNA using a diagnostic Single Nucleotide Polymorphism (SNP) panel. Results of the ND2 genetic sequencing and phylogenetic analysis indicated that these fish likely originated from native Redeye Bass stock from the Coosa River system of Alabama, Georgia, and Tennessee. Similarly, nuclear SNP data from the five individuals collected from the Verde River aligned with Redeye Bass reference genotypes based on STRUCTURE analysis. These results support the hypothesis that at least one of the introductions of black bass in Arizona's Verde River founded a previously unrecognized population of Redeye Bass. Further work is needed to determine the extent of the Redeye Bass presence in Arizona, whether Smallmouth Bass are also present in the Verde River system, and if hybridization of Redeye Bass and other black basses is occurring.
Collapse
|
7
|
Genetic Diversity and Population Differentiation of Kashgarian Loach ( Triplophysa yarkandensis) in Xinjiang Tarim River Basin. BIOLOGY 2021; 10:biology10080734. [PMID: 34439966 PMCID: PMC8389669 DOI: 10.3390/biology10080734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The distribution of Kashgarian loach (Triplophysa yarkandensis) is limited to the Tarim River basin, which is the largest inland river in China. However, the population size of T. yarkandensis has been diminishing, and it is critically endangered in the Tarim River basin due to the gradual depletion of water resources, together with alien invasion and agricultural cultivation in Tarim River. In this study, we adopted the RAD-seq method to investigate the population genetics of T. yarkandensis, and a high degree of genetic variations and significant genetic differentiation was detected among T. yarkandensis populations in the Tarim River basin. The obtained data contribute to understanding the genetic status of T. yarkandensis, and help to provide the scientific management strategies and direct future monitoring and utilization of the genetic resource in Xinjiang region. Abstract The distribution of Triplophysa yarkandensis is restricted to Xinjiang’s Tarim River basin. We collected 119 T. yarkandensis samples from nine geographic populations in the Tarim River basin and utilized the RAD-seq method for SNP genotyping. In this study, a total of 164.81 Gb bases were generated with the Illumina platform, and 129,873 candidate SNPs were obtained with the Stacks pipeline for population genetic analyses. High levels of genetic diversity were detected among nine populations. The AMOVA results showed that the majority of genetic variations originated from among populations (FST = 0.67), and the pairwise FST values ranged from 0.4579 to 0.8736, indicating high levels of genetic differentiation among these populations. The discriminate analysis of principal components (DAPCs) and neighbor joining (NJ) tree revealed that the nine populations could be separated into two clusters (i.e., south and north populations), and modest genetic differentiation between south and north populations was observed, while the individuals from several populations were not clustered together by geographical location. The evidence of two genetic boundaries between south and north populations (except TTM) was supported by barrier analysis. The Bayesian skyline plotting indicated that T. yarkandensis populations in the Tarim River basin had not experienced genetic bottlenecks, and the effective population size remained stable. This study first clarified the genetic diversity and differentiation of T. yarkandensis populations in the Tarim River basin, and it provided valuable molecular data for conservation and management of natural populations.
Collapse
|
8
|
Long JM, Taylor AT, Buonaccorsi V. A conservation-oriented SNP panel for Smallmouth Bass (Micropterus dolomieu), with emphasis on Interior Highlands lineages. CONSERV GENET RESOUR 2020. [DOI: 10.1007/s12686-020-01170-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|