1
|
Becker K. Animal Welfare Aspects in Planning and Conducting Experiments on Rodent Models of Subarachnoid Hemorrhage. Cell Mol Neurobiol 2023; 43:3965-3981. [PMID: 37861870 DOI: 10.1007/s10571-023-01418-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023]
Abstract
Subarachnoid hemorrhage is an acute life-threatening cerebrovascular disease with high socio-economic impact. The most frequent cause, the rupture of an intracerebral aneurysm, is accompanied by abrupt changes in intracerebral pressure, cerebral perfusion pressure and, consequently, cerebral blood flow. As aneurysms rupture spontaneously, monitoring of these parameters in patients is only possible with a time delay, upon hospitalization. To study alterations in cerebral perfusion immediately upon ictus, animal models are mandatory. This article addresses the points necessarily to be included in an animal project proposal according to EU directive 2010/63/EU for the protection of animals used for scientific purposes and herewith offers an insight into animal welfare aspects of using rodent models for the investigation of cerebral perfusion after subarachnoid hemorrhage. It compares surgeries, model characteristics, advantages, and drawbacks of the most-frequently used rodent models-the endovascular perforation model and the prechiasmatic and single or double cisterna magna injection model. The topics of discussing anesthesia, advice on peri- and postanesthetic handling of animals, assessing the severity of suffering the animals undergo during the procedure according to EU directive 2010/63/EU and weighing the use of these in vivo models for experimental research ethically are also presented. In conclusion, rodent models of subarachnoid hemorrhage display pathophysiological characteristics, including changes of cerebral perfusion similar to the clinical situation, rendering the models suited to study the sequelae of the bleeding. A current problem is low standardization of the models, wherefore reporting according to the ARRIVE guidelines is highly recommended. Animal welfare aspects of rodent models of subarachnoid hemorrhage. Rodent models for investigation of cerebral perfusion after subarachnoid hemorrhage are compared regarding surgeries and model characteristics, and 3R measures are suggested. Anesthesia is discussed, and advice given on peri- and postanesthetic handling. Severity of suffering according to 2010/63/EU is assessed and use of these in vivo models weighed ethically.
Collapse
Affiliation(s)
- Katrin Becker
- Institute for Translational Neurosurgery, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.
- Institute for Cardiovascular Sciences, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
2
|
Wan H, Brathwaite S, Ai J, Hynynen K, Macdonald RL. Role of perivascular and meningeal macrophages in outcome following experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 2021; 41:1842-1857. [PMID: 33444089 PMCID: PMC8327101 DOI: 10.1177/0271678x20980296] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The distribution and clearance of erythrocytes after subarachnoid hemorrhage (SAH) is poorly understood. We aimed to characterize the distribution of erythrocytes after SAH and the cells involved in their clearance. To visualize erythrocyte distribution, we injected fluorescently-labelled erythrocytes into the prechiasmatic cistern of mice. 10 minutes after injection, we found labelled erythrocytes in the subarachnoid space and ventricular system, and also in the perivascular spaces surrounding large penetrating arterioles. 2 and 5 days after SAH, fluorescence was confined within leptomeningeal and perivascular cells. We identified the perivascular cells as perivascular macrophages based on their morphology, location, Iba-1 immunoreactivity and preferential uptake of FITC-dextran. We subsequently depleted meningeal and perivascular macrophages 2 days before or 3 hours after SAH with clodronate liposomes. At day 5 after SAH, we found increased blood deposition in mice treated prior to SAH, but not those treated after. Treatment post-SAH improved neurological scoring, reduced neuronal cell death and perivascular inflammation, whereas pre-treatment only reduced perivascular inflammation. Our data indicate that after SAH, erythrocytes are distributed throughout the subarachnoid space extending into the perivascular spaces of parenchymal arterioles. Furthermore, meningeal and perivascular macrophages are involved in erythrocyte uptake and play an important role in outcome after SAH.
Collapse
Affiliation(s)
- Hoyee Wan
- Division of Neurosurgery, St. Michael's Hospital, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Sunnybrook Health Sciences Research Institute, Sunnybrook Hospital, Toronto, Canada
| | - Shakira Brathwaite
- Division of Neurosurgery, St. Michael's Hospital, Toronto, Canada.,Sunnybrook Health Sciences Research Institute, Sunnybrook Hospital, Toronto, Canada
| | - Jinglu Ai
- Division of Neurosurgery, St. Michael's Hospital, Toronto, Canada.,Barrow Neurological Institute, Phoenix, AZ, USA
| | - Kullervo Hynynen
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Sunnybrook Health Sciences Research Institute, Sunnybrook Hospital, Toronto, Canada
| | - R Loch Macdonald
- Division of Neurosurgery, St. Michael's Hospital, Toronto, Canada.,Department of Neurological Surgery, University of California San Francisco, Fresno, CA, USA
| |
Collapse
|
3
|
Liang T, Ma C, Wang T, Deng R, Ding J, Wang W, Xu Z, Li X, Li H, Sun Q, Shen H, Wang Z, Chen G. Galectin-9 Promotes Neuronal Restoration via Binding TLR-4 in a Rat Intracerebral Hemorrhage Model. Neuromolecular Med 2020; 23:267-284. [PMID: 32865657 DOI: 10.1007/s12017-020-08611-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating disease with high rates of mortality and morbidity. Galactose lectin-9 (Gal-9) belongs to the family of β-galactoside-binding lectins, which has been shown to play a vital role in immune tolerance and inflammation. However, the function of Gal-9 in ICH has not been fully studied in details. Several experiments were carried out to explore the role of Gal-9 in the late period of ICH. Primarily, ICH models were established in male adult Sprague Dawley (SD) rats. Next, the relative protein levels of Gal-9 at different time points after ICH were examined and the result showed that the level of Gal-9 increased and peaked at the 7th day after ICH. Then we found that when the content of Gal-9 increased, both the number of M2-type microglia and the corresponding anti-inflammatory factors also increased. Through co-immunoprecipitation (CO-IP) analysis, it was found that Gal-9 combines with Toll-like receptor-4 (TLR-4) during the period of the recovery after ICH. TUNEL staining and Fluoro-Jade B staining (FJB) proved that the amount of cell death decreased with the increase of Gal-9 content. Additionally, several behavioral experiments also demonstrated that when the level of Gal-9 increased, the motor, sensory, learning, and memory abilities of the rats recovered better compared to the ICH group. In short, this study illustrated that Gal-9 takes a crucial role after ICH. Enhancing Gal-9 could alleviate brain injury and promote the recovery of ICH-induced injury, so that Gal-9 may exploit a new pathway for clinical treatment of ICH.
Collapse
Affiliation(s)
- Tianyu Liang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Cheng Ma
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Tianyi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Ruming Deng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Jiasheng Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Wenjie Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Zhongmou Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Qing Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| |
Collapse
|
4
|
Peng J, Wu Y, Pang J, Sun X, Chen L, Chen Y, Tang J, Zhang JH, Jiang Y. Single clip: An improvement of the filament-perforation mouse subarachnoid haemorrhage model. Brain Inj 2018; 33:701-711. [PMID: 30296175 DOI: 10.1080/02699052.2018.1531310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jianhua Peng
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Yue Wu
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinwei Pang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Xiaochuan Sun
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ligang Chen
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yue Chen
- Department of Nuclear Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - John H. Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Yong Jiang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Pinkernell S, Becker K, Lindauer U. Severity assessment and scoring for neurosurgical models in rodents. Lab Anim 2016; 50:442-452. [DOI: 10.1177/0023677216675010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The most important acute neurological diseases seen at neurosurgery departments are traumatic brain injuries (TBI) and subarachnoid hemorrhages (SAH). In both diseases the pathophysiological sequela are complex and have not been fully understood up to now, and rodent models using rats and mice are most suitable for the investigation of the pathophysiological details. In both models, surgery is performed under anesthesia, followed by assessment of their functional outcome and behavioral testing before brain tissue analysis after euthanasia. Postoperative analgesia is mandatory, and supplementary care is highly recommended for refinement purposes. Pain and stress assessment is mainly based on clinical and behavioral signs, and further research is needed to improve the evaluation of severity in these models.
Collapse
Affiliation(s)
- Sarah Pinkernell
- Translational Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Katrin Becker
- Translational Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ute Lindauer
- Translational Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Atangana E, Schneider UC, Blecharz K, Magrini S, Wagner J, Nieminen-Kelhä M, Kremenetskaia I, Heppner FL, Engelhardt B, Vajkoczy P. Intravascular Inflammation Triggers Intracerebral Activated Microglia and Contributes to Secondary Brain Injury After Experimental Subarachnoid Hemorrhage (eSAH). Transl Stroke Res 2016; 8:144-156. [DOI: 10.1007/s12975-016-0485-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 12/29/2022]
|
7
|
Glial cell response after aneurysmal subarachnoid hemorrhage — Functional consequences and clinical implications. Biochim Biophys Acta Mol Basis Dis 2016; 1862:492-505. [DOI: 10.1016/j.bbadis.2015.10.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 12/17/2022]
|
8
|
Höllig A, Weinandy A, Nolte K, Clusmann H, Rossaint R, Coburn M. Experimental subarachnoid hemorrhage in rats: comparison of two endovascular perforation techniques with respect to success rate, confounding pathologies and early hippocampal tissue lesion pattern. PLoS One 2015; 10:e0123398. [PMID: 25867893 PMCID: PMC4395040 DOI: 10.1371/journal.pone.0123398] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/18/2015] [Indexed: 11/30/2022] Open
Abstract
Recently aside from the “classic” endovascular monofilament perforation technique to induce experimental subarachnoid hemorrhage (SAH) a modification using a tungsten wire advanced through a guide tube has been described. We aim to assess both techniques for their success rate (induction of SAH without confounding pathologies) as primary endpoint. Further, the early tissue lesion pattern as evidence for early brain injury will be analyzed as secondary endpoint. Sprague Dawley rats (n=39) were randomly assigned to receive either Sham surgery (n=4), SAH using the “classic” technique (n=18) or using a modified technique (n=17). Course of intracranial pressure (ICP) and regional cerebral blood flow (rCBF) was analyzed; subsequent pathologies were documented either 6 or 24 h after SAH. Hippocampal tissue samples were analyzed via immunohistochemistry and western blotting. SAH-induction, regardless of confounding pathologies, was independent from type of technique (p=0.679). There was no significant difference concerning case fatality rate (classic: 40%; modified: 20%; p=0.213). Successful induction of SAH without collateral ICH or SDH was possible in 40% with the classic and in 86.7% with the modified technique (p=0.008). Peak ICP levels differed significantly between the two groups (classic: 94 +/- 23 mmHg; modified: 68 +/- 19 mmHg; p=0.003). Evidence of early cellular stress response and activation of apoptotic pathways 6 h after SAH was demonstrated. The extent of stress response is not dependent on type of technique. Both tested techniques successfully produce SAH including activation of an early stress response and apoptotic pathways in the hippocampal tissue. However, the induction of SAH with less confounding pathologies was more frequently achieved with the modified tungsten wire technique.
Collapse
Affiliation(s)
- Anke Höllig
- Department of Neurosurgery, University RWTH Aachen, Aachen, Germany
- Department of Anesthesiology, University RWTH Aachen, Aachen, Germany
| | - Agnieszka Weinandy
- Department of Neurosurgery, University RWTH Aachen, Aachen, Germany
- Department of Neuropathology, University RWTH Aachen, Aachen, Germany
| | - Kay Nolte
- Department of Neuropathology, University RWTH Aachen, Aachen, Germany
| | - Hans Clusmann
- Department of Neurosurgery, University RWTH Aachen, Aachen, Germany
| | - Rolf Rossaint
- Department of Anesthesiology, University RWTH Aachen, Aachen, Germany
| | - Mark Coburn
- Department of Anesthesiology, University RWTH Aachen, Aachen, Germany
- * E-mail:
| |
Collapse
|
9
|
Atangana EN, Homburg D, Vajkoczy P, Schneider UC. Mouse cerebral magnetic resonance imaging fails to visualize brain volume changes after experimental subarachnoid hemorrhage. Acta Neurochir (Wien) 2015; 157:37-42. [PMID: 25398554 DOI: 10.1007/s00701-014-2276-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/04/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND Brain atrophy after subarachnoid hemorrhage (SAH) has been detected in humans and might serve as a functional read-out parameter for neuropsychological deficits. To determine whether serial magnetic resonance imaging (MRI) can provide information on brain atrophy in animals as well, mice that had undergone experimental SAH were scanned repeatedly after the bleeding. METHODS Using a 7-T rodent MRI, six mice were evaluated for total hemispheric, cerebrospinal fluid (CSF) and hippocampal volumes on days 1, 2, 4, 21, 28, 42 and 60 after experimental SAH or sham operation, respectively. RESULTS Repeated MRI scanning demonstrated a very high reproducibility with minimum standard deviation. Nevertheless, no significant differences were found between the two groups concerning hemispherical volumes or hippocampal volumes. A transient but significant increase in CSF volume was detected on days 2 and 60 after SAH. Compared with the existing method, no MRI data on brain atrophy in mice after experimental SAH have been published. CONCLUSION Repeated brain MRI in mice after experimental SAH did not provide additional information on brain atrophy. Our data suggest that this is not due to a lack of sensitivity of the method. Despite all promising details about MRI, our results should initiate careful consideration (additional sequences/other questions) before its further use in this certain area, especially since it is expensive and associated with demanding logistics.
Collapse
Affiliation(s)
- Etienne N Atangana
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | | | | | | |
Collapse
|
10
|
Rat endovascular perforation model. Transl Stroke Res 2014; 5:660-8. [PMID: 25213427 DOI: 10.1007/s12975-014-0368-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/18/2014] [Accepted: 08/21/2014] [Indexed: 12/31/2022]
Abstract
Experimental animal models of aneurysmal subarachnoid hemorrhage (SAH) have provided a wealth of information on the mechanisms of brain injury. The rat endovascular perforation (EVP) model replicates the early pathophysiology of SAH and hence is frequently used to study early brain injury following SAH. This paper presents a brief review of historical development of the EVP model and details the technique used to create SAH and considerations necessary to overcome technical challenges.
Collapse
|
11
|
Chen S, Zhu Z, Klebe D, Bian H, Krafft PR, Tang J, Zhang J, Zhang JH. Role of P2X purinoceptor 7 in neurogenic pulmonary edema after subarachnoid hemorrhage in rats. PLoS One 2014; 9:e89042. [PMID: 24533168 PMCID: PMC3923073 DOI: 10.1371/journal.pone.0089042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/13/2014] [Indexed: 12/20/2022] Open
Abstract
Introduction Neurogenic pulmonary edema (NPE) is an acute and serious complication after subarachnoid hemorrhage (SAH) with high mortality. The present study aimed to test the therapeutic potential of brilliant blue G (BBG), a selective P2X purinoceptor 7 (P2X7R) antagonist, on NPE in a rat SAH model. Methods SAH was induced by endovascular perforation. 86 Sprague-Dawley rats were randomly divided into sham, vehicle-, or BBG-treatment groups. Mortality, body weight, SAH grading, neurological deficits, NPE clinical symptoms, and pulmonary index were measured at 24 hours following SAH. Western blot, gelatin zymography, lung histopathology, and immunofluorescence staining were performed in the left lung lobe to explore the underlying mechanisms at 24 hours post-surgery. Results The incidence of clinical symptoms was correlated with pulmonary index. P2X7R and the marker of alveolar type I epithelial cells (the mucin-type glycoprotein T1-α) immunoreactivities were generally co-localized. BBG administration decreased mature interleukin-1β, myeloperoxidase, and matrix metallopeptidase-9 activation, but increased tight junction proteins, such as ZO-1 and occludin, which ameliorated pulmonary edema via anti-inflammation and improved neurological deficits. Conclusion P2X7R inhibition prevented NPE after SAH by attenuating inflammation. Thus, BBG is a potential therapeutic application for NPE after SAH and warrants further research.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, California, United States of America
| | - Zhigang Zhu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Damon Klebe
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, California, United States of America
| | - Hetao Bian
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, California, United States of America
| | - Paul R. Krafft
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, California, United States of America
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, California, United States of America
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- * E-mail: (Jianmin Zhang); (John Zhang)
| | - John H. Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, California, United States of America
- * E-mail: (Jianmin Zhang); (John Zhang)
| |
Collapse
|
12
|
Greenhalgh AD, Brough D, Robinson EM, Girard S, Rothwell NJ, Allan SM. Interleukin-1 receptor antagonist is beneficial after subarachnoid haemorrhage in rat by blocking haem-driven inflammatory pathology. Dis Model Mech 2012; 5:823-33. [PMID: 22679224 PMCID: PMC3484865 DOI: 10.1242/dmm.008557] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 04/23/2012] [Indexed: 12/19/2022] Open
Abstract
Subarachnoid haemorrhage (SAH) is a major contributor to the burden of stroke on society. Treatment options are limited and animal models of SAH do not always mimic key pathophysiological hallmarks of the disease, thus hindering development of new therapeutics. Inflammation is strongly associated with brain injury after SAH in animals and patients, and inhibition of the pro-inflammatory cytokine interleukin-1 (IL-1) represents a possible therapeutic target. Here we report that a rupture of the middle cerebral artery in the rat produces heterogeneous infarct patterns similar to those observed in human SAH. Administration of the IL-1 receptor antagonist (IL-1Ra) reduced blood-brain barrier breakdown, and the extent of breakdown correlated with brain injury. After SAH, haem oxygenase-1 (HO-1) was strongly expressed around the bleed site and in the cortex and striatum, indicating the presence of free haem, a breakdown product of haemoglobin. HO-1 expression was also found in the same regions as microglial/macrophage expression of IL-1α. The direct effect of haem on IL-1α expression was confirmed in vitro using organotypic slice culture (OSC). Haem-induced cell death was dependent on IL-1 signalling, with IL-1Ra completely blocking cellular injury. Furthermore, stimulation of mouse primary mixed glial cells with haem induced the release of IL-1α, but not IL-1β. Thus, we suggest that haem, released from lysed red blood cells (RBCs) in the subarachnoid space, acts as a danger-associated molecular pattern (DAMP) driving IL-1-dependent inflammation. These data provide new insights into inflammation after SAH-induced brain injury and suggest IL-1Ra as a candidate therapeutic for the disease.
Collapse
Affiliation(s)
- Andrew D Greenhalgh
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PL, UK.
| | | | | | | | | | | |
Collapse
|