1
|
Tian Y, Pan Y, Wang M, Meng X, Zhao X, Liu L, Wang Y, Wang Y. The combination of heart rate variability and ABCD 2 score portends adverse outcomes after minor stroke or transient ischemic attack. J Neurol Sci 2023; 445:120522. [PMID: 36634579 DOI: 10.1016/j.jns.2022.120522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE The residual recurrent risk of stroke, which cannot be entirely explained by the traditional ABCD2 score, still existed. Heart rate variability (HRV), a method for reflecting the function of automatic nervous system (ANS), was a novel predictor of secondary stroke events. We aimed to investigate the relationships of combined HRV and ABCD2 score with adverse outcomes after acute minor stroke (MS) or transient ischemic attack (TIA), and further investigate the independent associations between HRV and adverse outcomes after MS/TIA stratified by ABCD2 score. METHODS Data were obtained from the Third China National Stroke Registry (CNSR-III) study. We assessed the activity of ANS using standard deviation of NN intervals (SDNN), a time domain index of HRV. Trained investigators collected clinical characteristics and estimated ABCD2 score for each participant. All enrolled patients were categorized into different risk groups based on SDNN level and ABCD2 score. The clinial outcomes included recurrent stroke, recurrent ischemic stroke, and disability within 1-year follow-up. We evaluated whether combined SDNN and ABCD2 score were associated with recurrent events using multivariable Cox regression models, and those with disability using multivariable logistic regression models. The independent associations between SDNN and diverse outcomes stratified by ABCD2 score were explored using multivariable Cox and logistic regression analyses. RESULTS A total of 5,743 participants [3,316 (70.02) males, 62.0 (54.0-69.0) years] were included. Patients with low SDNN and ABCD2 ≥ 4 were associated with higher risk of recurrent stroke within 1 year (10.8% versus 4.9%; [HR] 1.31, 95% [CI] 0.92-1.88, P = 0.14) compared to patients with high SDNN with ABCD2 < 4. Lower SDNN was associated with higher recurrent stroke in patients with ABCD2 0-3 score ([HR] 0.73, 95% [CI] 0.57-0.947, P = 0.01) and ABCD2 4-5 score ([HR] 0.85, 95% [CI] 0.74-0.97, P = 0.02), but not in patients with ABCD2 6-7 score. CONCLUSION The combination of HRV and ABCD2 score might efficiently stratify the risk of 1-year recurrent stroke after MS/TIA. Moreover, lower SDNN was independently related to recurrent stroke in patients with MS/TIA, especially for those with low-to-moderate traditional vascular risk factors.
Collapse
Affiliation(s)
- Yu Tian
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Chinese Institute for Brain Research, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Yuesong Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Chinese Institute for Brain Research, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Mengxing Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Chinese Institute for Brain Research, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Chinese Institute for Brain Research, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Chinese Institute for Brain Research, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Liping Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Chinese Institute for Brain Research, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Chinese Institute for Brain Research, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Chinese Institute for Brain Research, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.
| |
Collapse
|
2
|
Yakhkind A, McTaggart RA, Jayaraman MV, Siket MS, Silver B, Yaghi S. Minor Stroke and Transient Ischemic Attack: Research and Practice. Front Neurol 2016; 7:86. [PMID: 27375548 PMCID: PMC4901037 DOI: 10.3389/fneur.2016.00086] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/23/2016] [Indexed: 12/29/2022] Open
Abstract
A majority of patients with ischemic stroke present with mild deficits for which aggressive management is not often pursued. Comprehensive work-up and appropriate intervention for minor strokes and transient ischemic attacks (TIAs) point toward better patient outcomes, lower costs, and fewer cases of disability. Imaging is a key modality to guide treatment and predict stroke recurrence. Patients with large vessel occlusions have been found to suffer worse outcomes and could benefit from intervention. Whether intravenous thrombolytic therapy decreases disability in minor stroke patients and whether acute endovascular intervention improves functional outcomes in patients with minor stroke and known large vessel occlusion remain controversial. Studies are ongoing to determine ideal antiplatelet therapy for stroke and TIA, while ongoing statin therapy, surgical management for patients with carotid stenosis, and anticoagulation for patients with atrial fibrillation have all been proven to decrease the rate of stroke recurrence and improve outcomes. This review summarizes the current evidence and discusses the standard of care for patients with minor stroke and TIA.
Collapse
Affiliation(s)
- Aleksandra Yakhkind
- Department of Neurology, The Warren Alpert Medical School of Brown University , Providence, RI , USA
| | - Ryan A McTaggart
- Department of Diagnostic Imaging, The Warren Alpert Medical School of Brown University , Providence, RI , USA
| | - Mahesh V Jayaraman
- Department of Neurology, The Warren Alpert Medical School of Brown University, Providence, RI, USA; Department of Diagnostic Imaging, The Warren Alpert Medical School of Brown University, Providence, RI, USA; Department of Neurosurgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Matthew S Siket
- Department of Emergency Medicine, The Warren Alpert Medical School of Brown University , Providence, RI , USA
| | - Brian Silver
- Department of Neurology, The Warren Alpert Medical School of Brown University , Providence, RI , USA
| | - Shadi Yaghi
- Department of Neurology, The Warren Alpert Medical School of Brown University , Providence, RI , USA
| |
Collapse
|