1
|
Dardano A, Lucchesi D, Garofolo M, Gualdani E, Falcetta P, Sancho Bornez V, Francesconi P, Del Prato S, Penno G. SIRT1 rs7896005 polymorphism affects major vascular outcomes, not all-cause mortality, in Caucasians with type 2 diabetes: A 13-year observational study. Diabetes Metab Res Rev 2022; 38:e3523. [PMID: 35092334 PMCID: PMC9286639 DOI: 10.1002/dmrr.3523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/03/2021] [Accepted: 12/31/2021] [Indexed: 11/09/2022]
Abstract
AIMS SIRT1 exerts effects on ageing and lifespan, as well cardiovascular (CV) disease risk. SIRT1 gene is very polymorph with a few tagging single nucleotide polymorphisms (SNPs) so far identified. Some SNPs, including rs7896005, were associated with type 2 diabetes (T2DM). We aimed to ascertain whether this SNP may be associated with CV disease at baseline as well with these same outcomes and all-cause mortality over a 13-year follow-up. MATERIALS AND METHODS Genotypes of SIRT1 gene were determined using TaqMan SNP assay. RESULTS Out of 905 T2DM, 9.1% had the AA genotype, 43.2% the AG, and 47.7% the GG. Hardy-Weinberg Equilibrium was met (minor allele frequency 0.306; p = 0.8899). At baseline, there was no difference across genotypes for sex, age, diabetes duration, CV risk factors, treatments, and microangiopathy. Major CV outcomes, myocardial infarction (MI), any coronary heart disease (CHD), and peripheral artery disease (PAD) were more frequent in GG than in AA/AG (p from 0.013 to 0.027), with no association with cerebrovascular events. By fully adjusted regression, GG remained independently related to major CV outcomes, MI, CHD, and PAD. Over follow-up, we recorded 258 major CV events (28.5%; AA/AG 25.2%, GG 32.2%; p = 0.014) with an adjusted hazard ratio (HR) of GG versus AA/AG of 1.296 (95% CI 1.007-1.668, p = 0.044); 169 coronary events (18.7%; AA/AG 15.4%, GG 22.2%; p = 0.006) with HR 1.522 (1.113-2.080, p = 0.008); 79 (8.7%) hospitalisation for heart failure (AA/AG 7.0%, GG 10.6%; p = 0.045) and HR 1.457 (0.919-2.309, p = 0.109); 36 PAD (4.0%; AA/AG 2.3%, GG 5.8%; p = 0.007) with HR 2.225 (1.057-4.684, p = 0.035). No association was found with cerebrovascular events, end stage renal disease, and all-cause mortality. CONCLUSIONS The rs7896005 SNP of SIRT1 might play a role in cardiovascular disease, mainly CHD risk in T2DM. Results call for larger association studies as well as studies to ascertain mechanisms by which this variant confers increased risk.
Collapse
Affiliation(s)
- Angela Dardano
- Section of Diabetes and Metabolic DiseaseDepartment of Clinical and Experimental MedicineUniversity of Pisa and Azienda Ospedaliero‐Universitaria PisanaPisaItaly
| | - Daniela Lucchesi
- Section of Diabetes and Metabolic DiseaseDepartment of Clinical and Experimental MedicineUniversity of Pisa and Azienda Ospedaliero‐Universitaria PisanaPisaItaly
| | - Monia Garofolo
- Section of Diabetes and Metabolic DiseaseDepartment of Clinical and Experimental MedicineUniversity of Pisa and Azienda Ospedaliero‐Universitaria PisanaPisaItaly
| | - Elisa Gualdani
- Epidemiology UnitRegional Health Agency (ARS) of TuscanyFlorenceItaly
| | - Pierpaolo Falcetta
- Section of Diabetes and Metabolic DiseaseDepartment of Clinical and Experimental MedicineUniversity of Pisa and Azienda Ospedaliero‐Universitaria PisanaPisaItaly
| | - Veronica Sancho Bornez
- Section of Diabetes and Metabolic DiseaseDepartment of Clinical and Experimental MedicineUniversity of Pisa and Azienda Ospedaliero‐Universitaria PisanaPisaItaly
| | - Paolo Francesconi
- Epidemiology UnitRegional Health Agency (ARS) of TuscanyFlorenceItaly
| | - Stefano Del Prato
- Section of Diabetes and Metabolic DiseaseDepartment of Clinical and Experimental MedicineUniversity of Pisa and Azienda Ospedaliero‐Universitaria PisanaPisaItaly
| | - Giuseppe Penno
- Section of Diabetes and Metabolic DiseaseDepartment of Clinical and Experimental MedicineUniversity of Pisa and Azienda Ospedaliero‐Universitaria PisanaPisaItaly
| |
Collapse
|
2
|
Eid M, Dzreyan V, Demyanenko S. Sirtuins 1 and 2 in the Acute Period After Photothrombotic Stroke: Expression, Localization and Involvement in Apoptosis. Front Physiol 2022; 13:782684. [PMID: 35574497 PMCID: PMC9092253 DOI: 10.3389/fphys.2022.782684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Sirtuins (SIRTs) are NAD+- dependent histone deacetylases. They are involved in a variety of biological pathways and are thought to be a promising target for treating several human disorders. Although evidence is piling up to support the neuroprotective role of SIRTs in ischemic stroke, the role of different sirtuin isoforms needs further investigation. We studied the effects of photothrombotic stroke (PTS) on the expression and localization of sirtuins SIRT1 and SIRT2 in neurons and astrocytes of the penumbra and tested the activity of their selective and non-selective inhibitors. SIRT1 levels significantly decreased in the penumbra cells nuclei and increased in their cytoplasm. This indicated a redistribution of SIRT1 from the nucleus to the cytoplasm after PTS. The expression and intracellular distribution of SIRT1 were also observed in astrocytes. Photothrombotic stroke caused a sharp increase in SIRT2 levels in the cytoplasmic fraction of the penumbra neurons. SIRT2 was not expressed in the penumbra astrocytes. SIRT1 and SIRT2 did not co-localize with TUNEL-positive apoptotic cells. Mice were injected with EX-527, a selective SIRT1 inhibitor; SirReal2, selective SIRT2 inhibitor or salermide, a nonspecific inhibitor of SIRT1 and SIRT2. These inhibitors did not demonstrate any change in the infarction volume or the apoptotic index, compared to the control samples. The studies presented indicate the involvement of these sirtuins in the response of brain cells to ischemia in the first 24 h, but the alterations in their expression and change in the localization of SIRT1 are not related to the regulation of penumbra cell apoptosis in the acute period after PTS.
Collapse
Affiliation(s)
| | - Valentina Dzreyan
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | | |
Collapse
|
3
|
Shakova FM, Kirova YI, Silachev DN, Romanova GA, Morozov SG. Protective Effects of PGC-1α Activators on Ischemic Stroke in a Rat Model of Photochemically Induced Thrombosis. Brain Sci 2021; 11:325. [PMID: 33806692 PMCID: PMC8002020 DOI: 10.3390/brainsci11030325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 11/16/2022] Open
Abstract
The pharmacological induction and activation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), a key regulator of ischemic brain tolerance, is a promising direction in neuroprotective therapy. Pharmacological agents with known abilities to modulate cerebral PGC-1α are scarce. This study focused on the potential PGC-1α-modulating activity of Mexidol (2-ethyl-6-methyl-3-hydroxypyridine succinate) and Semax (ACTH(4-7) analog) in a rat model of photochemical-induced thrombosis (PT) in the prefrontal cortex. Mexidol (100 mg/kg) was administered intraperitoneally, and Semax (25 μg/kg) was administered intranasally, for 7 days each. The expression of PGC-1α and PGC-1α-dependent protein markers of mitochondriogenesis, angiogenesis, and synaptogenesis was measured in the penumbra via immunoblotting at Days 1, 3, 7, and 21 after PT. The nuclear content of PGC-1α was measured immunohistochemically. The suppression of PGC-1α expression was observed in the penumbra from 24 h to 21 days following PT and reflected decreases in both the number of neurons and PGC-1α expression in individual neurons. Administration of Mexidol or Semax was associated with preservation of the neuron number and neuronal expression of PGC-1α, stimulation of the nuclear translocation of PGC-1α, and increased contents of protein markers for PGC-1α activation. This study opens new prospects for the pharmacological modulation of PGC-1α in the ischemic brain.
Collapse
Affiliation(s)
- Fatima M. Shakova
- Institute of General Pathology and Pathophysiology, Baltiyskaya Str. 8, 125315 Moscow, Russia; (Y.I.K.); (G.A.R.); (S.G.M.)
| | - Yuliya I. Kirova
- Institute of General Pathology and Pathophysiology, Baltiyskaya Str. 8, 125315 Moscow, Russia; (Y.I.K.); (G.A.R.); (S.G.M.)
| | - Denis N. Silachev
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, Leninskye Gory 1, Bldg. 40, 119992 Moscow, Russia;
- Histology, Embryology and Cytology Department, Peoples’ Friendship University of Russia, Miklukho-Maklaya Str. 6, 117198 Moscow, Russia
| | - Galina A. Romanova
- Institute of General Pathology and Pathophysiology, Baltiyskaya Str. 8, 125315 Moscow, Russia; (Y.I.K.); (G.A.R.); (S.G.M.)
| | - Sergey G. Morozov
- Institute of General Pathology and Pathophysiology, Baltiyskaya Str. 8, 125315 Moscow, Russia; (Y.I.K.); (G.A.R.); (S.G.M.)
| |
Collapse
|
4
|
Hardeland R. Sirtuins, melatonin, and the relevance of circadian oscillators. SIRTUIN BIOLOGY IN MEDICINE 2021:137-151. [DOI: 10.1016/b978-0-12-814118-2.00011-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Deng HJ, Zhou CH, Huang LT, Wen LB, Zhou ML, Wang CX. Activation of silent information regulator 1 exerts a neuroprotective effect after intracerebral hemorrhage by deacetylating NF-κB/p65. J Neurochem 2020; 157:574-585. [PMID: 33289070 DOI: 10.1111/jnc.15258] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/27/2022]
Abstract
Nuclear factor (NF)-κB-mediated neuroinflammation is an important mechanism of intracerebral hemorrhage (ICH)-induced neurotoxicity. Silent information regulator 1 (SIRT1) plays a multi-protective effect in a variety of diseases by deacetylating and inhibiting NF-κB/p65. However, the role of SIRT1 in brain damage following ICH remains unclear. We hypothesized that SIRT1 can protect against ICH-induced brain damage by inhibiting neuroinflammation through deacetylating NF-κB/p65. The ICH model was induced in vivo (with collagenase) and in vitro (with hemoglobin). Resveratrol and Ex527 were administered to activate or inhibit SIRT1, respectively. Western blot, immunohistochemistry, and immunofluorescence assays were performed to detect the expression of SIRT1 and p65. Enzyme-linked immunosorbent assays (ELISAs) were used to explore tumor necrosis factor (TNF)-α and interleukin (IL)-1β release. The neurological score, brain water content, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and brain hemoglobin content were determined to evaluate the neuroprotective effect of SIRT1. SIRT1 expression was decreased, whereas the level of acetylated p65 (Ac-p65) was elevated after ICH in vivo. Moreover, hemoglobin treatment decreased the expression of SIRT1 in vitro. Activation of SIRT1 by resveratrol had a neuroprotective effect, along with decreased levels of Ac-p65, IL-1β, TNF-α, and apoptosis after ICH. The effect of resveratrol was abolished by the SIRT1 inhibitor Ex527. Our results are consistent with the hypothesis that SIRT1 exerts a neuroprotective effect after ICH by deacetylating p65 to inhibit the NF-κB-dependent inflammatory response.
Collapse
Affiliation(s)
- Hong-Ji Deng
- Department of Neurosurgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Chen-Hui Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo University School of Medicine, Ningbo, China
| | - Li-Tian Huang
- Department of Neurosurgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Liang-Bao Wen
- Department of Neurosurgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Meng-Liang Zhou
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chun-Xi Wang
- Department of Neurosurgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, China
| |
Collapse
|
6
|
Hu Z, Li F, Zhou X, Zhang F, Huang L, Gu B, Shen J, Qi S. Momordica charantia polysaccharides modulate the differentiation of neural stem cells via SIRT1/Β-catenin axis in cerebral ischemia/reperfusion. Stem Cell Res Ther 2020; 11:485. [PMID: 33198798 PMCID: PMC7667795 DOI: 10.1186/s13287-020-02000-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Stroke is the leading cause of long-term motor disability and cognitive impairment. Recently, neurogenesis has become an attractive strategy for the chronic recovery of stroke. It is important to understand the molecular mechanism that promotes neural stem cell (NSC) neurogenesis for future NSC-based therapies. Our previous study showed that Momordica charantia polysaccharides (MCPs) exerted neuroprotective effects on stroke via their anti-oxidant and anti-inflammation activities. However, it remains unknown whether MCPs promote NSC neurogenesis after cerebral ischemic/reperfusion injury (IRI). METHODS We investigated MCPs' function in differentiation of neural stem cells (NSCs) in vivo and in vitro experiments. Based on a middle cerebral artery occlusion (MCAO) rat model, the effect of MCPs on neuronal differentiation after MCAO was analyzed. Primary NSCs and neural stem cell line C17.2 were cultured and subjected to glutamate stimulation to establish the cell model of IRI. We evaluated the effect of MCPs on NSC differentiation in IRI cell model by Western blot and immunofluorescence staining. The SIRT1 activity of NSCs post glutamate stimulation was also evaluated by CELL SIRT1 COLORIMETRY ASSAY KIT. In addition, molecular mechanism was clarified by employing the activator and inhibitor of SIRT1. RESULTS MCPs had no effects on the differentiation of neural stem cells under physiological conditions while shifted NSC differentiation potential from the gliogenic to neurogenic lineage under pathological conditions. Activation of SIRT1 with MCPs was responsible for the neuronal differentiation of C17.2-NSCs. The neuronal differentiation effect of MCPs was attributed to upregulation SIRT1-mediated deacetylation of β-catenin. MCP-induced deacetylation via SIRT1 promoted nuclear accumulation of β-catenin in NSCs. CONCLUSION Our findings indicate that the deacetylation of β-catenin by SIRT1 represents a critical mechanism of action of MCPs in promoting NSC neuronal differentiation. It provides an improved understanding of molecular mechanism underlying neuroprotective effects of MCPs in IRI, indicating its potential role on treating ischemic stroke especially chronic recovery.
Collapse
Affiliation(s)
- Zhaoli Hu
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Fengying Li
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Xiaoling Zhou
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Feng Zhang
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Linyan Huang
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Bing Gu
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jiangang Shen
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Suhua Qi
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China.
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
7
|
Yan W, Sun W, Fan J, Wang H, Han S, Li J, Yin Y. Sirt1-ROS-TRAF6 Signaling-Induced Pyroptosis Contributes to Early Injury in Ischemic Mice. Neurosci Bull 2020; 36:845-859. [PMID: 32253651 PMCID: PMC7410906 DOI: 10.1007/s12264-020-00489-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/04/2019] [Indexed: 01/01/2023] Open
Abstract
Stroke is an acute cerebro-vascular disease with high incidence and poor prognosis, most commonly ischemic in nature. In recent years, increasing attention has been paid to inflammatory reactions as symptoms of a stroke. However, the role of inflammation in stroke and its underlying mechanisms require exploration. In this study, we evaluated the inflammatory reactions induced by acute ischemia and found that pyroptosis occurred after acute ischemia both in vivo and in vitro, as determined by interleukin-1β, apoptosis-associated speck-like protein, and caspase-1. The early inflammation resulted in irreversible ischemic injury, indicating that it deserves thorough investigation. Meanwhile, acute ischemia decreased the Sirtuin 1 (Sirt1) protein levels, and increased the TRAF6 (TNF receptor associated factor 6) protein and reactive oxygen species (ROS) levels. In further exploration, both Sirt1 suppression and TRAF6 activation were found to contribute to this pyroptosis. Reduced Sirt1 levels were responsible for the production of ROS and increased TRAF6 protein levels after ischemic exposure. Moreover, N-acetyl-L-cysteine, an ROS scavenger, suppressed the TRAF6 accumulation induced by oxygen-glucose deprivation via suppression of ROS bursts. These phenomena indicate that Sirt1 is upstream of ROS, and ROS bursts result in increased TRAF6 levels. Further, the activation of Sirt1 during the period of ischemia reduced ischemia-induced injury after 72 h of reperfusion in mice with middle cerebral artery occlusion. In sum, these results indicate that pyroptosis-dependent machinery contributes to the neural injury during acute ischemia via the Sirt1-ROS-TRAF6 signaling pathway. We propose that inflammatory reactions occur soon after oxidative stress and are detrimental to neuronal survival; this provides a promising therapeutic target against ischemic injuries such as a stroke.
Collapse
Affiliation(s)
- Weijie Yan
- Department of Neurobiology, Ministry of Education Key Laboratory for Neurodegenerative Disorders, Capital Medical University, Beijing, 100069, China
| | - Wei Sun
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Jiahui Fan
- Department of Neurobiology, Ministry of Education Key Laboratory for Neurodegenerative Disorders, Capital Medical University, Beijing, 100069, China
| | - Haiqing Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Song Han
- Department of Neurobiology, Ministry of Education Key Laboratory for Neurodegenerative Disorders, Capital Medical University, Beijing, 100069, China
| | - Junfa Li
- Department of Neurobiology, Ministry of Education Key Laboratory for Neurodegenerative Disorders, Capital Medical University, Beijing, 100069, China
| | - Yanling Yin
- Department of Neurobiology, Ministry of Education Key Laboratory for Neurodegenerative Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
8
|
Romeo-Guitart D, Marcos-DeJuana C, Marmolejo-Martínez-Artesero S, Navarro X, Casas C. Novel neuroprotective therapy with NeuroHeal by autophagy induction for damaged neonatal motoneurons. Theranostics 2020; 10:5154-5168. [PMID: 32308774 PMCID: PMC7163445 DOI: 10.7150/thno.43765] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/20/2020] [Indexed: 01/03/2023] Open
Abstract
Rationale: Protective mechanisms allow healthy neurons to cope with diverse stresses. Excessive damage as well as aging can lead to defective functioning of these mechanisms. We recently designed NeuroHeal using artificial intelligence with the goal of bolstering endogenous neuroprotective mechanisms. Understanding the key nodes involved in neuroprotection will allow us to identify even more effective strategies for treatment of neurodegenerative diseases. Methods: We used a model of peripheral nerve axotomy in rat pups, that induces retrograde apoptotic death of motoneurons. Nourishing mothers received treatment with vehicle, NeuroHeal or NeuroHeal plus nicotinamide, an inhibitor of sirtuins, and analysis of the pups were performed by immunohistochemistry, electron microscopy, and immunoblotting. In vitro, the post-translational status of proteins of interest was detailed using organotypic spinal cord cultures and genetic modifications in cell lines to unravel the neuroprotective mechanisms involved. Results: We found that the concomitant activation of the NAD+-dependent deacetylase SIRT1 and the PI3K/AKT signaling pathway converge to increase the presence of deacetylated and phosphorylated FOXO3a, a transcription factor, in the nucleus. This favors the activation of autophagy, a pro-survival process, and prevents pro-apoptotic PARP1/2 cleavage. Major conclusion: NeuroHeal is a neuroprotective agent for neonatal motoneurons that fine-tunes autophagy on by converging SIRT1/AKT/FOXO3a axis. NeuroHeal is a combo of repurposed drugs that allow its readiness for prospective pediatric use.
Collapse
|
9
|
Zhou T, Wang S, Lu K, Yin C. Long Non-Coding RNA SNHG7 Alleviates Oxygen and Glucose Deprivation/Reoxygenation-Induced Neuronal Injury by Modulating miR-9/SIRT1 Axis in PC12 Cells: Potential Role in Ischemic Stroke. Neuropsychiatr Dis Treat 2020; 16:2837-2848. [PMID: 33262598 PMCID: PMC7700012 DOI: 10.2147/ndt.s273421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/19/2020] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE The roles of long non-coding RNA (lncRNAs) in ischemic stroke (IS) have been widely illustrated. Here, we focused on the function and mechanism of lncRNA SNHG7 in IS. METHODS Middle cerebral artery occlusion (MCAO) was used for inducing mice to establish IS models in vivo. Oxygen and glucose deprivation/reoxygenation (OGD/R) was used for treating PC12 cells to establish IS models in vitro. Relative expression of SNHG7 and miR-9 was determined by qRT-PCR. The neuronal injury was assessed by measuring relative activity of ROS, malondialdehyde (MDA) level and cell viability. Cell viability was determined by MTT assay. Dual-luciferase reporter (DLR) assay was employed to test the target of SNHG7 or miR-9. Western blot was used to determine the protein expression of SIRT1. Apoptosis rate was measured by flow cytometry. RESULTS SNHG7 was down-regulated and miR-9 was up-regulated by MCAO treatment in brain tissues of mice and by OGD/R treatment in PC12 cells. Overexpression of SNHG7 or suppression of miR-9 decreased the relative activity of ROS and the MDA level as well as enhancing cell viability, and SNHG7 reduced apoptosis rate in OGD/R-induced PC12 cells (IS cells). MiR-9 was targeted by SNHG7 and SIRT1 was targeted by miR-9. The protein expression of SIRT1 was reduced by OGD/R treatment in PC12 cells. The suppressive effects of SNHG7 on the relative activity of ROS, the MDA level and apoptosis rate as well as the promotion effect of SNHG7 on cell viability were reversed by miR-9 mimics or sh-SIRT1 in IS cells. CONCLUSION LncRNA SNHG7 alleviated OGD/R-induced neuronal injury by mediating miR-9/SIRT1 axis in vitro.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Neurosurgery, Zibo First Hospital, Zibo City 255200, People's Republic of China
| | - Shuai Wang
- Department of Neurosurgery, Zibo First Hospital, Zibo City 255200, People's Republic of China
| | - Kai Lu
- Department of Neurology, Liaocheng Third People's Hospital, Liaocheng City 252000, People's Republic of China
| | - Chunhui Yin
- Department of Intervention Clinic, Weifang Hospital of Traditional Chinese Medicine, Weifang City 261000, People's Republic of China
| |
Collapse
|
10
|
Pfister JA, Ma C, D’Mello SR. Catalytic-independent neuroprotection by SIRT1 is mediated through interaction with HDAC1. PLoS One 2019; 14:e0215208. [PMID: 30973934 PMCID: PMC6459503 DOI: 10.1371/journal.pone.0215208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 03/28/2019] [Indexed: 12/25/2022] Open
Abstract
SIRT1, a NAD+-dependent deacetylase, protects neurons in a variety of in vitro and in vivo models of neurodegenerative disease. We have previously described a neuroprotective effect by SIRT1 independent of its catalytic activity. To confirm this conclusion we tested a panel of SIRT1 deletion mutant constructs, designated Δ1–Δ10, in cerebellar granule neurons induced to undergo apoptosis by low potassium treatment. We find that deletions of its N-terminal, those lacking portions of the catalytic domain, as well as one that lacks the ESA (Essential for SIRT1 Activity) motif, are as protective as wild-type SIRT1. In contrast, deletion of the region spanning residues 542–609, construct Δ8, substantially reduced the neuroprotective activity of SIRT1. As observed with LK-induced apoptosis, all SIRT1 constructs except Δ8 protect neurons against mutant huntingtin toxicity. Although its own catalytic activity is not required, neuroprotection by SIRT1 is abolished by inhibitors of Class I HDACs as well as by knockdown of endogenous HDAC1. We find that SIRT1 interacts with HDAC1 and this interaction is greatly increased by deleting regions of SIRT1 necessary for its catalytic activity. However, SIRT1-mediated protection is not dependent on HDAC1 deacetylase activity. Although other studies have described that catalytic activity of SIRT1 mediates is neuroprotective effect, our study suggests that in cerebellar granule neurons its deacetylase activity is not important and that HDAC1 contributes to the neuroprotective effect of SIRT1.
Collapse
Affiliation(s)
- Jason A. Pfister
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, United States of America
| | - Chi Ma
- National Institutes of Health, Bethesda, MD, United States of America
| | - Santosh R. D’Mello
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, United States of America
- * E-mail:
| |
Collapse
|
11
|
Romeo-Guitart D, Casas C. Network-centric medicine for peripheral nerve injury: Treating the whole to boost endogenous mechanisms of neuroprotection and regeneration. Neural Regen Res 2019; 14:1122-1128. [PMID: 30804234 PMCID: PMC6425822 DOI: 10.4103/1673-5374.251187] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Peripheral nerve injuries caused by accidents may lead to paralysis, sensory disturbances, anaesthesia, and lack of autonomic functions. Functional recovery after disconnection of the motoneuronal soma from target tissue with proximal rupture of axons is determined by several factors: motoneuronal soma viability, proper axonal sprouting across inhibitory zones and elongation toward specific muscle, effective synapse contact rebuilding, and prevention of muscle atrophy. Therapies, such as adjuvant drugs with pleiotropic effects, that promote functional recovery after peripheral nerve injury are needed. Toward this aim, we designed a drug discovery workflow based on a network-centric molecular vision using unbiased proteomic data and neural artificial computational tools. Our focus is on boosting intrinsic capabilities of neurons for neuroprotection; this is in contrast to the common approach based on suppression of a pathobiological pathway known to be associated with disease condition. Using our workflow, we discovered neuroheal, a combination of two repurposed drugs that promotes motoneuronal soma neuroprotection, is anti-inflammatory, enhances axonal regeneration after axotomy, and reduces muscle atrophy. This drug discovery workflow has thus yielded a therapy that is close to its clinical application.
Collapse
Affiliation(s)
- David Romeo-Guitart
- Institut de Neurociències (INc) and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB) & Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Barcelona, Spain
| | - Caty Casas
- Institut de Neurociències (INc) and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB) & Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Barcelona, Spain
| |
Collapse
|
12
|
Liu Y, Jia S, Liang X, Dong M, Xu X, Lu C, Wei Y. Prognostic value of Sirtuin1 in acute ischemic stroke and its correlation with functional outcomes. Medicine (Baltimore) 2018; 97:e12959. [PMID: 30544370 PMCID: PMC6310560 DOI: 10.1097/md.0000000000012959] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The blood-brain barrier is impaired in patients with stroke. The release of protein markers such as Sirtuin1 (SIRTl) into circulation may be useful to assess the prognosis of patients with cerebrovascular disease. In this study, we investigated the predictive value of SIRT1 levels in acute ischemic stroke (AIS) patients. METHODS In all, 101 AIS patients and 38 healthy controls were enrolled, and blood samples were collected within 72 hours of stroke onset. SIRT1 was analyzed using a commercially available enzyme-linked immunosorbent assay kit. On admission, neurological status was assessed by the standardized National Institutes of Health Stroke Scale (NIHSS). Functional outcomes were measured 1 year after admission using the modified Rankin scale. RESULTS Compared with the control group, SIRT1 was significantly increased in the AIS group (0.63 ± 0.75 vs 0.48 ± 0.80 ng/mL; P ≤ 0.05). However, there was no significant correlation between SIRT1 and NIHSS score at admission (r = -0.01, P = .920). In addition, with an unadjusted odds ratio of 0.862 (95% confidence interval 0.495-1.502), SIRT1 was not significantly correlated with functional outcomes. CONCLUSIONS Serum concentrations of SIRT1 have no significant predictive value for favorable functional outcome after acute stroke in our study.
Collapse
Affiliation(s)
- Yang Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University
- Chongqing Key Laboratory of Neurobiology, Chongqing
| | - ShiYu Jia
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University
- Chongqing Key Laboratory of Neurobiology, Chongqing
| | - Xue Liang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University
- Chongqing Key Laboratory of Neurobiology, Chongqing
| | - MeiXue Dong
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University
- Chongqing Key Laboratory of Neurobiology, Chongqing
| | - XiaoMin Xu
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - ChangQi Lu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University
- Chongqing Key Laboratory of Neurobiology, Chongqing
| | - YouDong Wei
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University
- Chongqing Key Laboratory of Neurobiology, Chongqing
| |
Collapse
|
13
|
Zhang JF, Zhang YL, Wu YC. The Role of Sirt1 in Ischemic Stroke: Pathogenesis and Therapeutic Strategies. Front Neurosci 2018; 12:833. [PMID: 30519156 PMCID: PMC6258790 DOI: 10.3389/fnins.2018.00833] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022] Open
Abstract
Silent mating type information regulation 2 homolog 1 (Sirt1), a nicotine adenine dinucleotide (NAD+)-dependent enzyme, is well-known in playing a part in longevity. Ischemic stroke is a major neurological disorder and is a leading cause of death and adult disability worldwide. Recently, many studies have focused on the role of Sirt1 in ischemic stroke. Numerous studies consider Sirt1 as a protective factor and investigate the signaling pathways involved in the process under ischemic stress. However, the answer to whether upregulation of Sirt1 improves the outcome of stroke is still a controversy. In this review, we discuss the role and mechanisms of Sirt1 in the setting of ischemic stroke.
Collapse
Affiliation(s)
- Jun-Fang Zhang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Lei Zhang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun-Cheng Wu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Liang X, Liu Y, Jia S, Xu X, Dong M, Wei Y. SIRT1: The Value of Functional Outcome, Stroke-Related Dementia, Anxiety, and Depression in Patients with Acute Ischemic Stroke. J Stroke Cerebrovasc Dis 2018; 28:205-212. [PMID: 30361109 DOI: 10.1016/j.jstrokecerebrovasdis.2018.09.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/15/2018] [Accepted: 09/23/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The outcome of ischemic stroke depends on multiple factors and their function of each other. Studies have shown that Sirtuin1 (SIRT1) plays a chief role in the key procedure during ischemia/hypoxia by protecting against cellular stress and controlling the metabolic pathways. AIMS To explore the alterations in serum SIRT1 concentrations in acute ischemic stroke (AIS) patients and the relationship between SIRT1 and poststroke dementia, anxiety, and depression. METHODS One hundred and twenty four consecutive patients with clinically diagnosed AIS were recruited to participate in the study. Serum SIRT1 levels were measured using a commercially available ELISA equipment for SIRT1 (Cusabio, Wuhan, China). In 1 year after admission, the severity of stroke was assessed with the National Institutes of Health Stroke Scale score, and the functional outcome was measured by a modified Rankin scale, the Hamilton Anxiety Scale scores were evaluated to define patients with or without anxiety, and the Hamilton Depression Scale scores for depression. RESULTS We found the levels of serum SIRT1 was significantly higher (P = .036) in AIS patients (.62 ± .77 ng/mL) compared with healthy control subjects (.45 ± .69 ng/mL), but not significantly higher SIRT1 concentration (.58 ± .69 versus .64 ± .81 ng/mL, P = .298) than patients in the unfavorable functional outcome group. CONCLUSIONS There is no potential diagnostic and prognostic role of SIRT1 in AIS-related dementia, anxiety, and depression. The role of SIRT1 in AIS among human race needs to be further investigated.
Collapse
Affiliation(s)
- Xue Liang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China.
| | - Yang Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China.
| | - Shiyu Jia
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China.
| | - Xiaomin Xu
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Meixue Dong
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China.
| | - Youdong Wei
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China.
| |
Collapse
|
15
|
Tang BL. Could Sirtuin Activities Modify ALS Onset and Progression? Cell Mol Neurobiol 2017; 37:1147-1160. [PMID: 27942908 DOI: 10.1007/s10571-016-0452-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/30/2016] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a complex etiology. Sirtuins have been implicated as disease-modifying factors in several neurological disorders, and in the past decade, attempts have been made to check if manipulating Sirtuin activities and levels could confer benefit in terms of neuroprotection and survival in ALS models. The efforts have largely focused on mutant SOD1, and while limited in scope, the results were largely positive. Here, the body of work linking Sirtuins with ALS is reviewed, with discussions on how Sirtuins and their activities may impact on the major etiological mechanisms of ALS. Moving forward, it is important that the potentially beneficial effect of Sirtuins in ALS disease onset and progression are assessed in ALS models with TDP-43, FUS, and C9orf72 mutations.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD7, 8 Medical Drive, Singapore, 117597, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore.
| |
Collapse
|
16
|
Sirt1-Sirt3 axis regulates human blood-brain barrier permeability in response to ischemia. Redox Biol 2017; 14:229-236. [PMID: 28965081 PMCID: PMC5633840 DOI: 10.1016/j.redox.2017.09.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/12/2017] [Accepted: 09/21/2017] [Indexed: 12/22/2022] Open
Abstract
Sirtuin1 (Sirt1) and Sirtuin3 (Sirt3) are two well-characterized members of the silent information regulator 2 (Sir2) family of proteins. Both Sirt1 and Sirt3 have been shown to play vital roles in resistance to cellular stress, but the interaction between these two sirtuins has not been fully determined. In this study, we investigated the role of Sirt1-Sirt3 axis in blood-brain barrier (BBB) permeability after ischemia in vitro. Human brain microvascular endothelial cells and astrocytes were co-cultured to model the BBB in vitro and oxygen and glucose deprivation (OGD) was performed to mimic ischemia. The results of transepithelial electrical resistance (TEER) showed that suppression of Sirt1 via siRNA or salermide significantly decreased BBB permeability, whereas Sirt3 knockdown increased BBB permeability. In addition, Sirt1 was shown to regulate Sirt3 expression after OGD through inhibiting the AMPK-PGC1 pathway. Application of the AMPK inhibitor compound C partially prevented the effects of Sirt1-Sirt3 axis on BBB permeability after OGD. The results of flow cytometry and cytochrome c release demonstrated that Sirt1 and Sirt3 exert opposite effects on OGD-induced apoptosis. Furthermore, suppression of Sirt1 was shown to attenuate mitochondrial reactive oxygen species (ROS) generation, which contribute to the Sirt1-Sirt3 axis-induced regulation of BBB permeability and cell damage. In summary, these findings demonstrate that the Sirt1-Sirt3 axis might act as an important modulator in BBB physiology, and could be a therapeutic target for ischemic stroke via regulating mitochondrial ROS generation.
Collapse
|
17
|
Meng X, Tan J, Li M, Song S, Miao Y, Zhang Q. Sirt1: Role Under the Condition of Ischemia/Hypoxia. Cell Mol Neurobiol 2017; 37:17-28. [PMID: 26971525 DOI: 10.1007/s10571-016-0355-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/24/2016] [Indexed: 12/13/2022]
Abstract
Silent information regulator factor 2-related enzyme 1 (sirtuin 1, Sirt1) is a nicotinamide adenine dinucleotide-dependent deacetylase, which can deacetylate histone and non-histone proteins and other transcription factors, and is involved in the regulation of many physiological functions, including cell senescence, gene transcription, energy balance, and oxidative stress. Ischemia/hypoxia injury remains an unresolved and complicated situation in the diseases of ischemia stroke, heart failure, and coronary heart disease, especially among the old folks. Studies have demonstrated that aging could enhance the vulnerability of brain, heart, lung, liver, and kidney to ischemia/hypoxia injury and the susceptibility in old folks to ischemia/hypoxia injury might be associated with Sirt1. In this review, we mainly summarize the role of Sirt1 in modulating pathways against energy depletion and its involvement in oxidative stress, apoptosis, and inflammation under the condition of ischemia/hypoxia.
Collapse
Affiliation(s)
- Xiaofei Meng
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Jin Tan
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Mengmeng Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Shuling Song
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | | | - Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China.
| |
Collapse
|
18
|
Sirtuin 1 activation protects against early brain injury after experimental subarachnoid hemorrhage in rats. Cell Death Dis 2016; 7:e2416. [PMID: 27735947 PMCID: PMC5133967 DOI: 10.1038/cddis.2016.292] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 02/07/2023]
Abstract
Increasing evidence indicates that sirtuin 1 (SIRT1) is implicated in a wide range of cellular functions, such as oxidative stress, inflammation and apoptosis. The aim of this study was to investigate the change of SIRT1 in the brain after subarachnoid hemorrhage (SAH) and its role on SAH-induced early brain injury (EBI). In the first set of experiments, rats were randomly divided into sham group and SAH groups at 2, 6, 12, 24, 48 and 72 h. The expression of SIRT1 was evaluated by western blot analysis, immunohistochemistry and immunofluorescence. In another set of experiments, SIRT1-specific inhibitor (sirtinol) and activator (activator 3) were exploited to study the role of SIRT1 in SAH-induced EBI. It showed that the protein level of SIRT1 was markedly elevated at the early stage of SAH and peaked at 24 h after SAH. The expression of SIRT1 could be observed in neurons and microglia, and the enhanced SIRT1 was mainly located in neurons after SAH. Administration of sirtinol inhibited the expression and activation of SIRT1 pathways after SAH, while activator 3 enhanced the expression and activation of SIRT1 pathways after SAH. In addition, inhibition of SIRT1 could exacerbate forkhead transcription factors of the O class-, nuclear factor-kappa B- and p53-induced oxidative damage, neuroinflammation and neuronal apoptosis, leading to aggravated brain injury after SAH. In contrast, activator 3 treatment could reduce forkhead transcription factors of the O class-, nuclear factor-kappa B-, and p53-induced oxidative damage, neuroinflammation and neuronal apoptosis to protect against EBI. These results suggest that SIRT1 plays an important role in neuroprotection against EBI after SAH by deacetylation and subsequent inhibition of forkhead transcription factors of the O class-, nuclear factor-kappa B-, and p53-induced oxidative, inflammatory and apoptotic pathways. SIRT1 might be a new promising molecular target for SAH.
Collapse
|
19
|
Krey L, Lühder F, Kusch K, Czech-Zechmeister B, Könnecke B, Fleming Outeiro T, Trendelenburg G. Knockout of silent information regulator 2 (SIRT2) preserves neurological function after experimental stroke in mice. J Cereb Blood Flow Metab 2015; 35. [PMID: 26219598 PMCID: PMC4671131 DOI: 10.1038/jcbfm.2015.178] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sirtuin-2 (Sirt2) is a member of the NAD(+)-dependent protein deacetylase family. Various members of the sirtuin class have been found to be involved in processes related to longevity, regulation of inflammation, and neuroprotection. Induction of Sirt2 mRNA was found in the whole hemisphere after experimental stroke in a recent screening approach. Moreover, Sirt2 protein is highly expressed in myelin-rich brain regions after stroke. To examine the effects of Sirt2 on ischemic stroke, we induced transient focal cerebral ischemia in adult male Sirt2-knockout and wild-type mice. Two stroke models with different occlusion times were applied: a severe ischemia (45 minutes of middle cerebral artery occlusion (MCAO)) and a mild one (15 minutes of MCAO), which was used to focus on subcortical infarcts. Neurological deficit was determined at 48 hours after 45 minutes of MCAO, and up to 7 days after induction of 15 minutes of cerebral ischemia. In contrast to recent data on Sirt1, Sirt2(-/-) mice showed less neurological deficits in both models of experimental stroke, with the strongest manifestation after 48 hours of reperfusion. However, we did not observe a significant difference of stroke volumes or inflammatory cell count between Sirt2-deficient and wild-type mice. Thus we postulate that Sirt2 mediates myelin-dependent neuronal dysfunction during the early phase after ischemic stroke.
Collapse
Affiliation(s)
- Lea Krey
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Fred Lühder
- Department of Neuroimmunology, Institute for Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | - Birte Könnecke
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Department of Neurodegeneration and Restorative Research, University Medical Center Göttingen, Göttingen, Germany
| | - George Trendelenburg
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
20
|
Feng Y, Liu T, Dong SY, Guo YJ, Jankovic J, Xu H, Wu YC. Rotenone affects p53 transcriptional activity and apoptosis via targeting SIRT1 and H3K9 acetylation in SH-SY5Y cells. J Neurochem 2015; 134:668-76. [PMID: 25991017 DOI: 10.1111/jnc.13172] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/09/2015] [Accepted: 05/12/2015] [Indexed: 12/29/2022]
Abstract
The protein deacetylase SIRT1 has been recognized to exert its protective effect by directly deacetylasing histone and many other transcriptional factors including p53. However, the effect of SIRT1 on p53 expression at the transcriptional level still remains to be elucidated. In this study, we found that rotenone treatment decreased cell viability, induced apoptosis, reduced SIRT1 level, and promoted p53 expression. Pre-treatment with resveratrol, a SIRT1 activator, could attenuate rotenone-induced cell injury and p53 expression, whereas down-regulation of SIRT1 directly increased p53 expression. Moreover, chromatin immunoprecipitation experiments showed that SIRT1 bound to H3K9 within the p53 promoter region, and this binding resulted in decreased H3K9 acetylation and increased H3K9 tri-methylation, thereby inhibiting p53 gene transcription. In conclusion, our data indicate that rotenone promotes p53 transcription and apoptosis through targeting SIRT1 and H3K9. This leads to nigrostriatal degeneration, the main pathogenic mechanism of motor features of Parkinson's disease. SIRT1, a deacetylase enzyme, has neuroprotective effects for Parkinson's disease via targeting various factors. Resveratrol activated SIRT1 can target H3K9 and regulate p53 gene expression at the transcriptional level, thus inhibiting p53 transcription to enhance neuroprotection, alleviating rotenone induced dopaminergic neurodegeneration. We think these findings should provide a new strategy for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Ya Feng
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Su-Yan Dong
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-Jie Guo
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian Province, China.,Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Yun-Cheng Wu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Wang YQ, Cao Q, Wang F, Huang LY, Sang TT, Liu F, Chen SY. SIRT1 Protects Against Oxidative Stress-Induced Endothelial Progenitor Cells Apoptosis by Inhibiting FOXO3a via FOXO3a Ubiquitination and Degradation. J Cell Physiol 2015; 230:2098-107. [PMID: 25640014 DOI: 10.1002/jcp.24938] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 01/16/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Yu-Qiang Wang
- Department of Geriatrics; Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Qing Cao
- Department of Geriatrics; Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Fei Wang
- Department of Geriatrics; Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Li-Ya Huang
- Department of Geriatrics; Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Tian-Tian Sang
- Department of Geriatrics; Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Fang Liu
- Department of Geriatrics; Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Shu-Yan Chen
- Department of Geriatrics; Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| |
Collapse
|
22
|
Wang Y, Reis C, Applegate R, Stier G, Martin R, Zhang JH. Ischemic conditioning-induced endogenous brain protection: Applications pre-, per- or post-stroke. Exp Neurol 2015; 272:26-40. [PMID: 25900056 DOI: 10.1016/j.expneurol.2015.04.009] [Citation(s) in RCA: 319] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/06/2015] [Accepted: 04/11/2015] [Indexed: 11/17/2022]
Abstract
In the area of brain injury and neurodegenerative diseases, a plethora of experimental and clinical evidence strongly indicates the promise of therapeutically exploiting the endogenous adaptive system at various levels like triggers, mediators and the end-effectors to stimulate and mobilize intrinsic protective capacities against brain injuries. It is believed that ischemic pre-conditioning and post-conditioning are actually the strongest known interventions to stimulate the innate neuroprotective mechanism to prevent or reverse neurodegenerative diseases including stroke and traumatic brain injury. Recently, studies showed the effectiveness of ischemic per-conditioning in some organs. Therefore the term ischemic conditioning, including all interventions applied pre-, per- and post-ischemia, which spans therapeutic windows in 3 time periods, has recently been broadly accepted by scientific communities. In addition, it is extensively acknowledged that ischemia-mediated protection not only affects the neurons but also all the components of the neurovascular network (consisting of neurons, glial cells, vascular endothelial cells, pericytes, smooth muscle cells, and venule/veins). The concept of cerebroprotection has been widely used in place of neuroprotection. Intensive studies on the cellular signaling pathways involved in ischemic conditioning have improved the mechanistic understanding of tolerance to cerebral ischemia. This has added impetus to exploration for potential pharmacologic mimetics, which could possibly induce and maximize inherent protective capacities. However, most of these studies were performed in rodents, and the efficacy of these mimetics remains to be evaluated in human patients. Several classical signaling pathways involving apoptosis, inflammation, or oxidation have been elaborated in the past decades. Newly characterized mechanisms are emerging with the advances in biotechnology and conceptual renewal. In this review we are going to focus on those recently reported methodological and mechanistic discoveries in the realm of ischemic conditioning. Due to the varied time differences of ischemic conditioning in different animal models and clinical trials, it is important to define optimal timing to achieve the best conditioning induced neuroprotection. This brings not only an opportunity in the treatment of stroke, but challenges as well, as data is just becoming available and the procedures are not yet optimized. The purpose of this review is to shed light on exploiting these ischemic conditioning modalities to protect the cerebrovascular system against diverse injuries and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuechun Wang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, USA; Department of Physiology, Jinan University School of Medicine, Guangzhou, China
| | - Cesar Reis
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Richard Applegate
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Gary Stier
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Robert Martin
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, USA; Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA.
| |
Collapse
|
23
|
Hu Y, Li R, Yang H, Luo H, Chen Z. Sirtuin 6 is essential for sodium sulfide-mediated cytoprotective effect in ischemia/reperfusion-stimulated brain endothelial cells. J Stroke Cerebrovasc Dis 2014; 24:601-9. [PMID: 25543188 DOI: 10.1016/j.jstrokecerebrovasdis.2014.10.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/07/2014] [Accepted: 10/10/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Our recent data demonstrated that hydrogen sulfide (H2S), the third gaseous transmitter, had a protective effect on stroke. The purpose of this study was to investigate the protective effect of H2S in oxygen glucose deprivation and reperfusion (OGD/R)-stimulated brain endothelial cells and its association with sirtuin 6 (SIRT6). METHODS Cultured bEnd.3 brain endothelial cells were exposed to OGD/R. The effects of sodium sulfide (Na2S, an exogenous H2S donor) on cell death, lactate dehydrogenase release, intracellular reactive oxygen species (ROS) production, superoxide dismutase (SOD) and catalase (CAT) activities, H2S level, cystathionine γ-lyase (CSE) expression, and sirtuin 6 (SIRT6) expression/activity were tested to elucidate the protective mechanisms of H2S. RESULTS Application of Na2S concentration dependently reduced OGD/R-induced cell death, accompanying with decreasing intracellular ROS production and increasing activities of SOD and CAT. In addition, Na2S also enhanced H2S level and CSE expression associated with upregulation of SIRT6 expression and activity in OGD/R-stimulated brain endothelial cells, whereas CSE inhibitor DL-propargylglycine further deteriorated the decrease of SIRT6 expression and activity as well as the reduction of H2S level and CSE expression caused by OGD/R. Furthermore, SIRT6 knockdown abolished Na2S-mediated CSE expression and cytoprotection action in OGD/R-stimulated cells. CONCLUSIONS Na2S protected brain endothelial cells against simulated ischemic injury through SIRT6-dependent mechanisms.
Collapse
Affiliation(s)
- Youyang Hu
- Department of Pharmacology, Anhui Medical University, Hefei, China; Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruilin Li
- Department of Pharmacy, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Heng Yang
- Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hong Luo
- Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Zhiwu Chen
- Department of Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
24
|
Amigo I, Kowaltowski AJ. Dietary restriction in cerebral bioenergetics and redox state. Redox Biol 2014; 2:296-304. [PMID: 24563846 PMCID: PMC3926116 DOI: 10.1016/j.redox.2013.12.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 12/30/2013] [Indexed: 12/12/2022] Open
Abstract
The brain has a central role in the regulation of energy stability of the organism. It is the organ with the highest energetic demands, the most susceptible to energy deficits, and is responsible for coordinating behavioral and physiological responses related to food foraging and intake. Dietary interventions have been shown to be a very effective means to extend lifespan and delay the appearance of age-related pathological conditions, notably those associated with brain functional decline. The present review focuses on the effects of these interventions on brain metabolism and cerebral redox state, and summarizes the current literature dealing with dietary interventions on brain pathology.
Collapse
Key Words
- AD, Alzheimer's disease
- CR, caloric restriction
- Caloric restriction
- Energy metabolism
- FR, food restriction
- IF, intermittent fasting
- KA, kainic acid
- MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- Mitochondria
- NOS, nitric oxide synthase
- Neurological diseases
- PD, Parkinson's disease
- PTZ, pentylenetetrazole
- ROS, reactive oxygen species
- TCA, tricarboxylic acid cycle
Collapse
Affiliation(s)
- Ignacio Amigo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| |
Collapse
|