1
|
Meng P, Liu T, Zhong Z, Fang R, Qiu F, Luo Y, Yang K, Cai H, Mei Z, Zhang X, Ge J. A novel rat model of cerebral small vessel disease based on vascular risk factors of hypertension, aging, and cerebral hypoperfusion. Hypertens Res 2024; 47:2195-2210. [PMID: 38872026 DOI: 10.1038/s41440-024-01741-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
Cerebral small vessel disease (CSVD) is a major cause of vascular cognitive impairment and functional loss in elderly patients. Progressive remodeling of cerebral microvessels due to arterial hypertension or other vascular risk factors, such as aging, can cause dementia or stroke. Typical imaging characteristics of CSVD include cerebral microbleeds (CMB), brain atrophy, small subcortical infarctions, white matter hyperintensities (WMH), and enlarged perivascular spaces (EPVS). Nevertheless, no animal models that reflect all the different aspects of CSVD have been identified. Here, we generated a new CSVD animal model using D-galactose (D-gal) combined with cerebral hypoperfusion in spontaneously hypertensive rats (SHR), which showed all the hallmark pathological features of CSVD and was based on vascular risk factors. SHR were hypodermically injected with D-gal (400 mg/kg/d) and underwent modified microcoil bilateral common carotid artery stenosis surgery. Subsequently, neurological assessments and behavioral tests were performed, followed by vascular ultrasonography, electron microscopy, flow cytometry, and histological analyses. Our rat model showed multiple cerebrovascular pathologies, such as CMB, brain atrophy, subcortical small infarction, WMH, and EPVS, as well as the underlying causes of CSVD pathology, including oxidative stress injury, decreased cerebral blood flow, structural and functional damage to endothelial cells, increased blood-brain barrier permeability, and inflammation. The use of this animal model will help identify new therapeutic targets and subsequently aid the development and testing of novel therapeutic interventions. Main process of the study: Firstly, we screened for optimal conditions for mimicking aging by injecting D-gal into rats for 4 and 8 weeks. Subsequently, we performed modified microcoil BCAS intervention for 4 and 8 weeks in rats to screen for optimal hypoperfusion conditions. Finally, based on these results, we combined D-gal for 8 weeks and modified microcoil BCAS for 4 weeks to explore the changes in SHR.
Collapse
Affiliation(s)
- Pan Meng
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tongtong Liu
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ziyan Zhong
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Rui Fang
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Feng Qiu
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yan Luo
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Kailin Yang
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Huzhi Cai
- First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhigang Mei
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| | - Xi Zhang
- The Second People's Hospital of Hunan Province, Changsha, Hunan, China.
| | - Jinwen Ge
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
2
|
Jia R, Solé-Guardia G, Kiliaan AJ. Blood-brain barrier pathology in cerebral small vessel disease. Neural Regen Res 2024; 19:1233-1240. [PMID: 37905869 PMCID: PMC11467932 DOI: 10.4103/1673-5374.385864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/27/2023] [Accepted: 08/22/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Cerebral small vessel disease is a neurological disease that affects the brain microvasculature and which is commonly observed among the elderly. Although at first it was considered innocuous, small vessel disease is nowadays regarded as one of the major vascular causes of dementia. Radiological signs of small vessel disease include small subcortical infarcts, white matter magnetic resonance imaging hyperintensities, lacunes, enlarged perivascular spaces, cerebral microbleeds, and brain atrophy; however, great heterogeneity in clinical symptoms is observed in small vessel disease patients. The pathophysiology of these lesions has been linked to multiple processes, such as hypoperfusion, defective cerebrovascular reactivity, and blood-brain barrier dysfunction. Notably, studies on small vessel disease suggest that blood-brain barrier dysfunction is among the earliest mechanisms in small vessel disease and might contribute to the development of the hallmarks of small vessel disease. Therefore, the purpose of this review is to provide a new foundation in the study of small vessel disease pathology. First, we discuss the main structural domains and functions of the blood-brain barrier. Secondly, we review the most recent evidence on blood-brain barrier dysfunction linked to small vessel disease. Finally, we conclude with a discussion on future perspectives and propose potential treatment targets and interventions.
Collapse
Affiliation(s)
- Ruxue Jia
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behavior, Center for Medical Neuroscience, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, Nijmegen, the Netherlands
| | - Gemma Solé-Guardia
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behavior, Center for Medical Neuroscience, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, Nijmegen, the Netherlands
| | - Amanda J. Kiliaan
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behavior, Center for Medical Neuroscience, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, Nijmegen, the Netherlands
| |
Collapse
|
3
|
Sun L, Chen D, Zhao C, Hu Y, Xu Y, Xia S, Yang H, Bao X, Zhang Z, Zhou C, Zhang Q, Xu Y. Echinatin protects from ischemic brain injury by attenuating NLRP3-related neuroinflammation. Neurochem Int 2024; 175:105676. [PMID: 38336256 DOI: 10.1016/j.neuint.2024.105676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/30/2023] [Accepted: 01/05/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Microglia-mediated neuroinflammation is the major contributor to the secondary brain injury of ischemic stroke. NLRP3 is one of the major components of ischemia-induced microglial activation. Echinatin, a chalcone found in licorice, was reported to have the activity of anti-inflammation and antioxidant. However, the relative study of echinatin in microglia or ischemic stroke is still unclear. METHODS We intravenously injected echinatin or vehicle into adult ischemic male C57/BL6J mice induced by 60-min transient middle cerebral artery occlusion (tMCAO). The intraperitoneal injection was performed 4.5 h after reperfusion and then daily for 2 more days. Infarct size, blood brain barrier (BBB) leakage, neurobehavioral tests, and microglial-mediated inflammatory reaction were examined to assess the outcomes of echinatin treatment. LPS and LPS/ATP stimulation on primary microglia were used to explore the underlying anti-inflammatory mechanism of echinatin. RESULTS Echinatin treatment efficiently decreased the infarct size, alleviated blood brain barrier (BBB) damage, suppressed microglial activation, reduced the production of inflammatory factors (e.g., IL-1β, IL-6, IL-18, TNF-α, iNOS, COX2), and relieved post-stroke neurological defects in tMCAO mice. Mechanistically, we found that echinatin could suppress the NLRP3 assembly and reduce the production of inflammatory mediators independently of NF-κB and monoamine oxidase (MAO). CONCLUSION Based on our study, we have identified echinatin as a promising therapeutic strategy for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Liang Sun
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Duo Chen
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Chenchen Zhao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yujie Hu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Yuhao Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Haiyan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Zhi Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Chao Zhou
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Qingxiu Zhang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China.
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
4
|
Gupta S, Singh P, Sharma B. Montelukast Ameliorates 2K1C-Hypertension Induced Endothelial Dysfunction and Associated Vascular Dementia. Curr Hypertens Rev 2024; 20:23-35. [PMID: 38192137 DOI: 10.2174/0115734021276985231204092425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Declined kidney function associated with hypertension is a danger for cognitive deficits, dementia, and brain injury. Cognitive decline and vascular dementia (VaD) are serious public health concerns, which highlights the urgent need for study on the risk factors for cognitive decline. Cysteinyl leukotriene (CysLT1) receptors are concerned with regulating cognition, motivation, inflammatory processes, and neurogenesis. OBJECTIVE This research aims to examine the consequence of montelukast (specific CysLT1 antagonist) in renovascular hypertension 2-kidney-1-clip-2K1C model-triggered VaD in experimental animals. METHODS 2K1C tactics were made to prompt renovascular hypertension in mature male rats. Morris water maze was employed to measure cognition. Mean arterial pressure (MAP), serum nitrite levels, aortic superoxide content, vascular endothelial activity, brain's oxidative stress (diminished glutathione, raised lipid peroxides), inflammatory markers (IL-10, IL-6, TNF-α), cholinergic activity (raised acetylcholinesterase), and cerebral injury (staining of 2, 3, 5- triphenylterazolium chloride) were also examined. RESULTS Montelukast in doses of 5.0 and 10.0 mg kg-1 was used intraperitoneally as the treatment drug. Along with cognitive deficits, 2K1C-operated rats showed elevated MAP, endothelial dysfunction, brain oxidative stress, inflammation, and cerebral damage with diminished serum nitrite/nitrate. Montelukast therapy significantly and dose-dependently mitigated the 2K1Chypertension- provoked impaired behaviors, biochemistry, endothelial functions, and cerebral infarction. CONCLUSION The 2K1C tactic caused renovascular hypertension and associated VaD, which was mitigated via targeted regulation of CysLT1 receptors by montelukast administration. Therefore, montelukast may be taken into consideration for the evaluation of its complete potential in renovascular-hypertension-induced VaD.
Collapse
MESH Headings
- Animals
- Sulfides
- Cyclopropanes
- Acetates/pharmacology
- Quinolines/pharmacology
- Male
- Dementia, Vascular/physiopathology
- Dementia, Vascular/drug therapy
- Dementia, Vascular/metabolism
- Dementia, Vascular/psychology
- Leukotriene Antagonists/pharmacology
- Oxidative Stress/drug effects
- Hypertension, Renovascular/physiopathology
- Hypertension, Renovascular/drug therapy
- Hypertension, Renovascular/metabolism
- Disease Models, Animal
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiopathology
- Endothelium, Vascular/metabolism
- Receptors, Leukotriene/metabolism
- Inflammation Mediators/metabolism
- Cognition/drug effects
- Rats, Wistar
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Rats
- Maze Learning/drug effects
Collapse
Affiliation(s)
- Surbhi Gupta
- Department of Pharmacology, School of Pharmacy, Bharat Institute of Technology, Partapur Bypass, Meerut, Uttar Pradesh, India
| | - Prabhat Singh
- Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
5
|
Perrotta M, Carnevale D, Carnevale L. Mouse models of cerebral injury and cognitive impairment in hypertension. Front Aging Neurosci 2023; 15:1199612. [PMID: 37539342 PMCID: PMC10394515 DOI: 10.3389/fnagi.2023.1199612] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Hypertension is a major risk factor for dementia, including both vascular and neurodegenerative etiologies. With the original aim of studying the effect of blood pressure elevation on canonical target organs of hypertension as the heart, the vasculature or the kidneys, several experimental models of hypertension have sprouted during the years. With the more recent interest of understanding the cerebral injury burden caused by hypertension, it is worth understanding how the main models of hypertension or localized cerebral hypertension stand in the field of hypertension-induced cerebral injury and cognitive impairment. With this review we will report main genetic, pharmacological and surgical models of cognitive impairment induced by hypertension, summarizing how each specific category and model can improve our understanding of the complex phenomenon of cognitive loss of vascular etiology.
Collapse
Affiliation(s)
- Marialuisa Perrotta
- Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
- Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Department of Angiocardioneurology and Translational Medicine, Pozzilli, Italy
| | - Daniela Carnevale
- Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
- Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Department of Angiocardioneurology and Translational Medicine, Pozzilli, Italy
| | - Lorenzo Carnevale
- Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Department of Angiocardioneurology and Translational Medicine, Pozzilli, Italy
| |
Collapse
|