Xu W, Huang M, Jiang Z, Qian Y. Graph-Based Unsupervised Feature Selection for Interval-Valued Information System.
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024;
35:12576-12589. [PMID:
37067967 DOI:
10.1109/tnnls.2023.3263684]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Feature selection has become one of the hot research topics in the era of big data. At the same time, as an extension of single-valued data, interval-valued data with its inherent uncertainty tend to be more applicable than single-valued data in some fields for characterizing inaccurate and ambiguous information, such as medical test results and qualified product indicators. However, there are relatively few studies on unsupervised attribute reduction for interval-valued information systems (IVISs), and it remains to be studied how to effectively control the dramatic increase of time cost in feature selection of large sample datasets. For these reasons, we propose a feature selection method for IVISs based on graph theory. Then, the model complexity could be greatly reduced after we utilize the properties of the matrix power series to optimize the calculation of the original model. Our approach can be divided into two steps. The first is feature ranking with the principles of relevance and nonredundancy, and the second is selecting top-ranked attributes when the number of features to keep is fixed as a priori. In this article, experiments are performed on 14 public datasets and the corresponding seven comparative algorithms. The results of the experiments verify that our algorithm is effective and efficient for feature selection in IVISs.
Collapse