1
|
Kiseleva DG, Kirichenko TV, Markina YV, Cherednichenko VR, Gugueva EA, Markin AM. Mechanisms of Myocardial Edema Development in CVD Pathophysiology. Biomedicines 2024; 12:465. [PMID: 38398066 PMCID: PMC10887157 DOI: 10.3390/biomedicines12020465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024] Open
Abstract
Myocardial edema is the excess accumulation of fluid in the myocardial interstitium or cardiac cells that develops due to changes in capillary permeability, loss of glycocalyx charge, imbalance in lymphatic drainage, or a combination of these factors. Today it is believed that this condition is not only a complication of cardiovascular diseases, but in itself causes aggravation of the disease and increases the risks of adverse outcomes. The study of molecular, genetic, and mechanical changes in the myocardium during edema may contribute to the development of new approaches to the diagnosis and treatment of this condition. This review was conducted to describe the main mechanisms of myocardial edema development at the molecular and cellular levels and to identify promising targets for the regulation of this condition based on articles cited in Pubmed up to January 2024.
Collapse
Affiliation(s)
- Diana G. Kiseleva
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 119991 Moscow, Russia (V.R.C.)
| | - Tatiana V. Kirichenko
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 119991 Moscow, Russia (V.R.C.)
- Chazov National Medical Research Center of Cardiology, Ac. Chazov Str. 15A, 121552 Moscow, Russia
| | - Yuliya V. Markina
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 119991 Moscow, Russia (V.R.C.)
| | - Vadim R. Cherednichenko
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 119991 Moscow, Russia (V.R.C.)
| | - Ekaterina A. Gugueva
- N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia;
| | - Alexander M. Markin
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 119991 Moscow, Russia (V.R.C.)
- Medical Institute, Peoples’ Friendship University of Russia Named after Patrice Lumumba (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
2
|
Brakenhielm E, González A, Díez J. Role of Cardiac Lymphatics in Myocardial Edema and Fibrosis: JACC Review Topic of the Week. J Am Coll Cardiol 2021; 76:735-744. [PMID: 32762908 DOI: 10.1016/j.jacc.2020.05.076] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/23/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022]
Abstract
The cardiac lymphatic network plays a key role in regulation of myocardial extracellular volume and immune cell homeostasis. In different pathological conditions cardiac lymphatics undergo significant remodeling, with insufficient lymphatic function and/or lymphangiogenesis leading to fluid accumulation and development of edema. Additionally, by modulating the reuptake of tissue-infiltrating immune cells, lymphatics regulate immune responses. Available evidence suggests that both edema and inadequate immune response resolution may contribute to extracellular matrix remodeling and interstitial myocardial fibrosis. Interestingly, stimulation of lymphangiogenesis has been shown to improve cardiac function and reduce the progression of myocardial fibrosis during heart failure development after myocardial infarction. This review goes through the available clinical and experimental data supporting a role for cardiac lymphatics in cardiac disease, focusing on the current evidence linking poor cardiac lymphatic transport to the fibrogenic process and discussing potential avenues for novel biomarkers and therapeutic targets to limit cardiac fibrosis and dysfunction.
Collapse
Affiliation(s)
- Ebba Brakenhielm
- Institut National de la Santé et de la Recherche Médicale (Inserm) UMR1096, Faculty of Medicine and Pharmacy, Rouen, France
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Javier Díez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain; Departments of Nephrology and Cardiology, University of Navarra Clinic, Pamplona, Spain.
| |
Collapse
|
3
|
Pogontke C, Guadix JA, Ruiz-Villalba A, Pérez-Pomares JM. Development of the Myocardial Interstitium. Anat Rec (Hoboken) 2018; 302:58-68. [PMID: 30288955 DOI: 10.1002/ar.23915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/26/2018] [Accepted: 05/11/2018] [Indexed: 12/24/2022]
Abstract
The space between cardiac myocytes is commonly referred-to as the cardiac interstitium (CI). The CI is a unique, complex and dynamic microenvironment in which multiple cell types, extracellular matrix molecules, and instructive signals interact to crucially support heart homeostasis and promote cardiac responses to normal and pathologic stimuli. Despite the biomedical and clinical relevance of the CI, its detailed cellular structure remains to be elucidated. In this review, we will dissect the organization of the cardiac interstitium by following its changing cellular and molecular composition from embryonic developmental stages to adulthood, providing a systematic analysis of the biological components of the CI. The main goal of this review is to contribute to our understanding of the CI roles in health and disease. Anat Rec, 302:58-68, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cristina Pogontke
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Instituto Malagueño de Biomedicina (IBIMA), Campus de Teatinos s/n, 29080, Málaga, Spain.,BIONAND, Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía, Universidad de Málaga), Severo Ochoa n°25, 29590 Campanillas (Málaga), Spain
| | - Juan A Guadix
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Instituto Malagueño de Biomedicina (IBIMA), Campus de Teatinos s/n, 29080, Málaga, Spain.,BIONAND, Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía, Universidad de Málaga), Severo Ochoa n°25, 29590 Campanillas (Málaga), Spain
| | - Adrián Ruiz-Villalba
- Stem Cell Therapy Area, Foundation for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - José M Pérez-Pomares
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Instituto Malagueño de Biomedicina (IBIMA), Campus de Teatinos s/n, 29080, Málaga, Spain.,BIONAND, Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía, Universidad de Málaga), Severo Ochoa n°25, 29590 Campanillas (Málaga), Spain
| |
Collapse
|
4
|
An M, Kwon K, Park J, Ryu DR, Shin JA, Lee Kang J, Choi JH, Park EM, Lee KE, Woo M, Kim M. Extracellular matrix-derived extracellular vesicles promote cardiomyocyte growth and electrical activity in engineered cardiac atria. Biomaterials 2017; 146:49-59. [PMID: 28898757 DOI: 10.1016/j.biomaterials.2017.09.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/28/2017] [Accepted: 09/01/2017] [Indexed: 12/14/2022]
Abstract
Extracellular matrix (ECM) plays a critical role in the provision of the necessary microenvironment for the proper regeneration of the cardiac tissue. However, specific mechanisms that lead to ECM-mediated cardiac regeneration are not well understood. To elucidate the potential mechanisms, we investigated ultra-structures of the cardiac ECM using electron microscopy. Intriguingly, we observed large quantities of micro-vesicles from decellularized right atria. RNA and protein analyses revealed that these contained exosomal proteins and microRNAs (miRNAs), which we referred to herein as ECM-derived extracellular vesicles (ECM-EVs). One particular miRNA from ECM-EVs, miR-199a-3p, promoted cell growth of isolated neonatal cardiomyocytes and sinus nodal cells by repressing homeodomain-only protein (HOPX) expression and increasing GATA-binding 4 (Gata4) acetylation. To determine the mechanisms, we knocked down Gata4 and showed that miR-199a-3p actions required Gata4 for cell proliferation in isolated neonatal cardiomyocytes and sinus nodal cells. To further explore the role of this miRNA, we isolated neonatal cardiac cells and recellularized into atrial ECM, referred here has engineered atria. Remarkably, miR-199a-3p mediated the enrichment of cardiomyocyte and sinus nodal cell population, and enhanced electrocardiographic signal activity of sinus nodal cells in the engineered atria. Importantly, antisense of miRNA (antagomir) against miR-199a-3p was capable of abolishing these actions of miR-199a-3p in the engineered atria. We further showed in Ang II-infused animal model of sinus nodal dysfunction that miR-199-3p-treated cardiac cells remarkably ameliorated and restored the electrical activity as shown by normalization of the ECG, in contrast to untreated cells, which did not show electrical recovery. In conclusion, these results provide clear evidence of the critical role of ECM, in not only providing a scaffold for cardiac tissue growth, but also in promoting atrial electrical function through ECM-derived miR-199a-3p.
Collapse
Affiliation(s)
- Minae An
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Kihwan Kwon
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Junbeom Park
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Dong-Ryeol Ryu
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Jung-A Shin
- Department of Anatomy, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Jihee Lee Kang
- Department of Physiology and Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul 158-710, South Korea
| | - Ji Ha Choi
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Eun-Mi Park
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Kyung Eun Lee
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Minna Woo
- Toronto General Hospital Research Institute and Division of Endocrinology and Metabolism, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Minsuk Kim
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|