1
|
Wang Y, Wu G, Wang Y, Rehman A, Yu L, Zhang H, Jin Q, Suleria HAR, Wang X. Recent developments, challenges, and prospects of dietary omega-3 PUFA-fortified foods: Focusing on their effects on cardiovascular diseases. Food Chem 2025; 470:142498. [PMID: 39736180 DOI: 10.1016/j.foodchem.2024.142498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/30/2024] [Accepted: 12/13/2024] [Indexed: 01/01/2025]
Abstract
Dietary omega-3 polyunsaturated fatty acids (Dω-3 PUFAs) have been extensively studied and have been proven to offer notable benefits for heart health. Scientific meta-analysis strongly endorses them as potent bioactive agents capable of preventing and managing cardiovascular diseases (CVDs). Fortification of foods with Dω-3 PUFAs is a potential strategy for enhancing Dω-3 PUFA intake in an effort to continue strengthening public health outcomes. This review analyzed recent trends in the fortification of foods with Dω-3 PUFAs in relation to technological developments, challenges linked to the method, and future scope. Additionally, recent clinical trials and research on the effect of Dω-3 PUFA-fortified food consumption on cardiovascular health are reviewed. Technological trends in fortification methods, namely microencapsulation- and nanoencapsulation, have made considerable progress to date, along with excellent stability in both processing and storage conditions and favorable bioaccessibility and sensory attributes of fortified foods. There is a tremendous deal of promise for cardiovascular health based on recent clinical trial findings that fortifying food with Dω-3 PUFAs decreased the incidence of heart disease, blood pressure, and lipid profiles. In summary, substantial progress has been made in addressing the challenges of Dω-3 PUFA fortification. However, further multidisciplinary research is needed to inculcate effectiveness toward achieving the maximum possible Dω-3 PUFAs to protect against the harmful effects of CVDs and continue global health progress.
Collapse
Affiliation(s)
- Yongjin Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yandan Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Le Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; National Center of Technology Innovation for Dairy, Hohhot 010000, China
| | - Hui Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Hafiz Ansar Rasul Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Liu Q, Tang X, Yang B, Hao T, Han S, Xu X, Zhao Z, Lai W, Li Y, Du J, Mai K, Ai Q. Autophagy and endoplasmic reticulum stress-related protein homeostasis links palmitic acid to hepatic lipotoxicity in zebrafish (Danio rerio), counteracted by linoleic acid. Free Radic Biol Med 2025; 233:148-161. [PMID: 40089081 DOI: 10.1016/j.freeradbiomed.2025.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/24/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Saturated fatty acids (SFAs) are the primary contributors to hepatic lipotoxic injuries accompanied by the accumulation of hepatic insoluble protein inclusions that are composed of ubiquitinated proteins and p62, but the role of these inclusions in the SFA-induced hepatic lipotoxic injuries and their regulatory mechanisms are incompletely understood. In this study, we demonstrated that palmitic acid (PA), a dietary SFA, induced aberrant accumulation of hepatic insoluble protein inclusions, leading to hepatic lipotoxic injuries in zebrafish. Mechanistically, the accumulation of hepatic insoluble protein inclusions and the subsequent lipotoxic injuries induced by PA were attributed to reduced autophagy activity and increased endoplasmic reticulum (ER) stress. In addition, the upregulation of p62 by the ER stress response factor XBP1s and ATF4 further exacerbated PA-induced accumulation of hepatic insoluble protein inclusions and subsequent lipotoxic injuries. Importantly, the ω-6 PUFA linoleic acid (LA) attenuated PA-induced accumulation of hepatic insoluble protein inclusions and subsequent lipotoxic injuries by improving defective autophagy and reducing ER stress induced by PA. Overall, the present study provides new mechanisms by which SFAs and ω-6 PUFA influence hepatic lipotoxic injuries. These findings not only advance the understanding of hepatic lipotoxic injuries induced by SFAs, but also provide new insights for optimizing the rational substitution of fish oil by vegetable oils in aquaculture and the balance of fatty acid intake in human diets.
Collapse
Affiliation(s)
- Qiangde Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Xiao Tang
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Bingyuan Yang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Tingting Hao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Shangzhe Han
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Xiang Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Zengqi Zhao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Wencong Lai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Yueru Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Jianlong Du
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China.
| |
Collapse
|
3
|
Devi NR, Khandelwal S, Subramaniyan M, Pappu S. Extraction, characterization, and therapeutic potential of Omega-3 fatty acids from Belone belone skin. 3 Biotech 2024; 14:42. [PMID: 38261852 PMCID: PMC10796888 DOI: 10.1007/s13205-023-03885-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/08/2023] [Indexed: 01/25/2024] Open
Abstract
This study provides the fatty acid profile, presence of Omega 3 fatty acids (ω3FAs) and therapeutic potential of the skin of Garfish (Belone belone), a highly nutritious fish. The ω3FAs were obtained using the urea crystallization method and confirmed by UV VIS spectroscopy, HPLC, FT-IR, and NMR. Additionally, the therapeutic potential of the ω3FAs was assessed through antioxidant, antimicrobial, antibiofilm, and toxicity assays. The oil extracted from Garfish skin (GS) predominantly contains ω3FAs, palmitic acids, and oleic acids. The ω3FAs exhibit high anti-free radical activity and ferric reducing activity. It reduces nitric oxide production as well as lipid peroxidation under certain time. They also demonstrate effective antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus pneumoniae. The biofilm formation is efficiently reduced by ω3FAs and eradication effects on biofilm are higher at 4000 µg/mL of concentration. When tested against brine shrimp larvae, ω3FAs were found to be non-toxic. The study indicates that GS skin oil contains a significant amount of omega-3 fatty acids and has potential therapeutic benefits due to its antioxidant and antibacterial properties, without causing any toxic effects. Omega-3 fatty acids have the potential to enhance the treatment of infections caused by harmful bacteria and their biofilm formation. Further research is needed to understand how omega-3 fatty acids work to kill bacteria and how they affect bacterial gene expression.
Collapse
Affiliation(s)
- Naorem Rojita Devi
- Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu 630003 India
| | - Sital Khandelwal
- Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu 630003 India
| | - Muthumari Subramaniyan
- Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu 630003 India
| | - Srinivasan Pappu
- Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu 630003 India
| |
Collapse
|
4
|
Borgonovi SM, Iametti S, Di Nunzio M. Docosahexaenoic Acid as Master Regulator of Cellular Antioxidant Defenses: A Systematic Review. Antioxidants (Basel) 2023; 12:1283. [PMID: 37372014 DOI: 10.3390/antiox12061283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Docosahexaenoic acid (DHA) is a polyunsaturated fatty acid that benefits the prevention of chronic diseases. Due to its high unsaturation, DHA is vulnerable to free radical oxidation, resulting in several unfavorable effects, including producing hazardous metabolites. However, in vitro and in vivo investigations suggest that the relationship between the chemical structure of DHA and its susceptibility to oxidation may not be as clear-cut as previously thought. Organisms have developed a balanced system of antioxidants to counteract the overproduction of oxidants, and the nuclear factor erythroid 2-related factor 2 (Nrf2) is the key transcription factor identified for transmitting the inducer signal to the antioxidant response element. Thus, DHA might preserve the cellular redox status promoting the transcriptional regulation of cellular antioxidants through Nrf2 activation. Here, we systematically summarize the research on the possible role of DHA in controlling cellular antioxidant enzymes. After the screening process, 43 records were selected and included in this review. Specifically, 29 studies related to the effects of DHA in cell cultures and 15 studies concerned the effects of consumption or treatment with DHA in animal. Despite DHA's promising and encouraging effects at modulating the cellular antioxidant response in vitro/in vivo, some differences observed among the reviewed studies may be accounted for by the different experimental conditions adopted, including the time of supplementation/treatment, DHA concentration, and cell culture/tissue model. Moreover, this review offers potential molecular explanations for how DHA controls cellular antioxidant defenses, including involvement of transcription factors and the redox signaling pathway.
Collapse
Affiliation(s)
- Sara Margherita Borgonovi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Stefania Iametti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Mattia Di Nunzio
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
5
|
Rebouças JSA, Oliveira FPS, Araujo ACDS, Gouveia HL, Latorres JM, Martins VG, Prentice Hernández C, Tesser MB. Shellfish industrial waste reuse. Crit Rev Biotechnol 2023; 43:50-66. [PMID: 34933613 DOI: 10.1080/07388551.2021.2004989] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The global production of aquatic organisms has grown steadily in recent decades. This increase in production results in high volumes of by-products and waste, generally considered to be of low commercial value and part of them are consequently discarded in landfills or in the sea, causing serious environmental problems when not used. Currently, a large part of the reused aquaculture waste is destined for the feed industry. This generally undervalued waste presents an important source of bioactive compounds in its composition, such as: amino acids, carotenoids, chitin and its derivatives, fatty acids and minerals. These compounds are capable of offering numerous benefits due to their bioactive properties. However, the applicability of these compounds may be opportune in several other sectors. This review describes studies that seek to obtain and apply bioactive compounds from different sources of aquaculture waste, thus adding commercial value to these underutilized biomasses.HIGHLIGHTSVolume of aquaculture industrial waste from crustaceans and mollusks.Quantity and quality of bioactive components in aquaculture waste.Applications of recovered proteins, lipids, chitin, carotenoids and minerals.Future prospects for the destination of aquaculture waste.
Collapse
Affiliation(s)
- José Stênio Aragão Rebouças
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, Brazil.,Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | | | - Alan Carvalho de Sousa Araujo
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, Brazil.,Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Helena Leão Gouveia
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Juliana Machado Latorres
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Vilásia Guimarães Martins
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Carlos Prentice Hernández
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, Brazil.,Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Marcelo Borges Tesser
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, Brazil
| |
Collapse
|
6
|
Durmus M, Özogul Y, Ozyurt G, Ucar Y, Kosker AR, Yazgan H, Ibrahim SA, Özogul F. Effects of citrus essential oils on the oxidative stability of microencapsulated fish oil by spray-drying. Front Nutr 2023; 9:978130. [PMID: 36687678 PMCID: PMC9852853 DOI: 10.3389/fnut.2022.978130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
The effects of citrus essential oils (orange, lemon, mandarin, and grapefruit) on the oxidative stability of microencapsulated fish oil by spray-drying were evaluated. The encapsulation efficiency of microcapsules was in the range of 42.25 and 62.43%. Twelve active substances were determined as major volatile components of citrus essential oils. The highest phenolic content was obtained from grapefruit essential oil (44.32 mg GAE/g). Lower values of thiobarbituric acid reactive substances (TBARs) were obtained for microencapsulated fish oils with essential oils compared to control. At the end of storage, the highest peroxide value (PV) was observed in the control group (25.30 meq O2/kg oil) while the lowest value was in the lemon (13.40 meq O2/kg oil) and orange group (13.91 meq O2/kg oil). The results of this study showed that citrus essential oils can be used to improve the oxidative stability of fish oil microcapsules.
Collapse
Affiliation(s)
- Mustafa Durmus
- Department of Seafood and Processing Technology, Faculty of Fisheries, Çukurova University, Adana, Turkey
| | - Yesim Özogul
- Department of Seafood and Processing Technology, Faculty of Fisheries, Çukurova University, Adana, Turkey
| | - Gulsun Ozyurt
- Department of Seafood and Processing Technology, Faculty of Fisheries, Çukurova University, Adana, Turkey
| | - Yilmaz Ucar
- Fatsa Faculty of Marine Science, Ordu University, Ordu, Turkey
| | - Ali Riza Kosker
- Department of Seafood and Processing Technology, Faculty of Fisheries, Çukurova University, Adana, Turkey
| | - Hatice Yazgan
- Department of Food Hygiene and Technology, Faculty of Ceyhan Veterinary Medicine, Çukurova University, Adana, Turkey
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, North Carolina Agricultural and Technical State University, Greensboro, NC, United States,*Correspondence: Salam A. Ibrahim ✉
| | - Fatih Özogul
- Department of Seafood and Processing Technology, Faculty of Fisheries, Çukurova University, Adana, Turkey
| |
Collapse
|
7
|
Biondi G, Marrano N, Borrelli A, Rella M, Palma G, Calderoni I, Siciliano E, Lops P, Giorgino F, Natalicchio A. Adipose Tissue Secretion Pattern Influences β-Cell Wellness in the Transition from Obesity to Type 2 Diabetes. Int J Mol Sci 2022; 23:ijms23105522. [PMID: 35628332 PMCID: PMC9143684 DOI: 10.3390/ijms23105522] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022] Open
Abstract
The dysregulation of the β-cell functional mass, which is a reduction in the number of β-cells and their ability to secure adequate insulin secretion, represents a key mechanistic factor leading to the onset of type 2 diabetes (T2D). Obesity is recognised as a leading cause of β-cell loss and dysfunction and a risk factor for T2D. The natural history of β-cell failure in obesity-induced T2D can be divided into three steps: (1) β-cell compensatory hyperplasia and insulin hypersecretion, (2) insulin secretory dysfunction, and (3) loss of β-cell mass. Adipose tissue (AT) secretes many hormones/cytokines (adipokines) and fatty acids that can directly influence β-cell function and viability. As this secretory pattern is altered in obese and diabetic patients, it is expected that the cross-talk between AT and pancreatic β-cells could drive the maintenance of the β-cell integrity under physiological conditions and contribute to the reduction in the β-cell functional mass in a dysmetabolic state. In the current review, we summarise the evidence of the ability of the AT secretome to influence each step of β-cell failure, and attempt to draw a timeline of the alterations in the adipokine secretion pattern in the transition from obesity to T2D that reflects the progressive deterioration of the β-cell functional mass.
Collapse
|
8
|
Das UN. Arachidonic Acid as Mechanotransducer of Renin Cell Baroreceptor. Nutrients 2022; 14:nu14040749. [PMID: 35215399 PMCID: PMC8874622 DOI: 10.3390/nu14040749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
For normal maintenance of blood pressure and blood volume a well-balanced renin-angiotensin-aldosterone system (RAS) is necessary. For this purpose, renin is secreted as the situation demands by the juxtaglomerular cells (also called as granular cells) that are in the walls of the afferent arterioles. Juxtaglomerular cells can sense minute changes in the blood pressure and blood volume and accordingly synthesize, store, and secrete appropriate amounts of renin. Thus, when the blood pressure and blood volume are decreased JGA cells synthesize and secrete higher amounts of renin and when the blood pressure and blood volume is increased the synthesis and secretion of renin is decreased such that homeostasis is restored. To decipher this important function, JGA cells (renin cells) need to sense and transmit the extracellular physical forces to their chromatin to control renin gene expression for appropriate renin synthesis. The changes in perfusion pressure are sensed by Integrin β1 that is transmitted to the renin cell’s nucleus via lamin A/C that produces changes in the architecture of the chromatin. This results in an alteration (either increase or decrease) in renin gene expression. Cell membrane is situated in an unique location since all stimuli need to be transmitted to the cell nucleus and messages from the DNA to the cell external environment can be conveyed only through it. This implies that cell membrane structure and integrity is essential for all cellular functions. Cell membrane is composed to proteins and lipids. The lipid components of the cell membrane regulate its (cell membrane) fluidity and the way the messages are transmitted between the cell and its environment. Of all the lipids present in the membrane, arachidonic acid (AA) forms an important constituent. In response to pressure and other stimuli, cellular and nuclear shape changes occur that render nucleus to act as an elastic mechanotransducer that produces not only changes in cell shape but also in its dynamic behavior. Cell shape changes in response to external pressure(s) result(s) in the activation of cPLA2 (cytosolic phospholipase 2)-AA pathway that stretches to recruit myosin II which produces actin-myosin cytoskeleton contractility. Released AA can undergo peroxidation and peroxidized AA binds to DNA to regulate the expression of several genes. Alterations in the perfusion pressure in the afferent arterioles produces parallel changes in the renin cell membrane leading to changes in renin release. AA and its metabolic products regulate not only the release of renin but also changes in the vanilloid type 1 (TRPV1) expression in renal sensory nerves. Thus, AA and its metabolites function as intermediate/mediator molecules in transducing changes in perfusion and mechanical pressures that involves nuclear mechanotransduction mechanism. This mechanotransducer function of AA has relevance to the synthesis and release of insulin, neurotransmitters, and other soluble mediators release by specialized and non-specialized cells. Thus, AA plays a critical role in diseases such as diabetes mellitus, hypertension, atherosclerosis, coronary heart disease, sepsis, lupus, rheumatoid arthritis, and cancer.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 2221 NW 5th St., Battle Ground, WA 98604, USA
| |
Collapse
|
9
|
Nunes Marsiglio-Librais G, Aparecida Vilas-Boas E, Carlein C, Hoffmann MDA, Roma LP, Carpinelli AR. Evidence for NADPH oxidase activation by GPR40 in pancreatic β-cells. Redox Rep 2021; 25:41-50. [PMID: 32354273 PMCID: PMC7241480 DOI: 10.1080/13510002.2020.1757877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective: Investigate the involvement of the fatty acids receptor GPR40 in the assembly and activation of NADPH oxidase and the implications on pancreatic β-cell function. Methods: BRIN-BD11 β-cells were exposed to GPR40 agonist (GW9508) or linoleic acid in different glucose concentrations. Superoxide and H2O2 were analyzed, respectively, by DHE fluorescence and by fluorescence of the H2O2 sensor, roGFP2-Orp1. Protein contents of p47phox in plasma membrane and cytosol were analyzed by western blot. NADPH oxidase role was evaluated by p22phox siRNA or by pharmacological inhibition with VAS2870. NOX2 KO islets were used to measure total cytosolic calcium and insulin secretion. Results: GW9508 and linoleic acid increased superoxide and H2O2 contents at 5.6 and 8.3 mM of glucose. In addition, in 5.6 mM, but not at 16.7 mM of glucose, activation of GPR40 led to the translocation of p47phox to the plasma membrane. Knockdown of p22phox abolished the increase in superoxide after GW9508 and linoleic acid. No differences in insulin secretion were found between wild type and NOX2 KO islets treated with GW9508 or linoleic acid. Discussion: We report for the first time that acute activation of GPR40 leads to NADPH oxidase activation in pancreatic β-cells, without impact on insulin secretion.
Collapse
Affiliation(s)
| | - Eloisa Aparecida Vilas-Boas
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil.,Department of Biophysics, Center for Human and Molecular Biology, CIPMM, Saarland University, Homburg/Saar, Germany
| | - Christopher Carlein
- Department of Biophysics, Center for Human and Molecular Biology, CIPMM, Saarland University, Homburg/Saar, Germany
| | | | - Leticia Prates Roma
- Department of Biophysics, Center for Human and Molecular Biology, CIPMM, Saarland University, Homburg/Saar, Germany
| | - Angelo Rafael Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
10
|
Chen WT, Chen SY, Wu DW, Lee CC, Lee TM. Effect of icosapent ethyl on susceptibility to ventricular arrhythmias in postinfarcted rat hearts: Role of GPR120-mediated connexin43 phosphorylation. J Cell Mol Med 2020; 24:9267-9279. [PMID: 32639107 PMCID: PMC7417730 DOI: 10.1111/jcmm.15575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
The ω‐3 fatty acids exert as an antioxidant via the G protein‐coupled receptor 120 (GPR120). Icosapent ethyl, a purified eicosapentaenoic acid, showed a marked reduction in sudden cardiac death. Connexin43 is sensitive to redox status. We assessed whether icosapent ethyl attenuates fatal arrhythmias after myocardial infarction, a status of high oxidative stress, through increased connexin43 expression and whether the GPR120 signalling is involved in the protection. Male Wistar rats after ligating coronary artery were assigned to either vehicle or icosapent ethyl for 4 weeks. The postinfarction period was associated with increased oxidative‐nitrosative stress. In concert, myocardial connexin43 levels revealed a significant decrease in vehicle‐treated infarcted rats compared with sham. These changes of oxidative‐nitrosative stress and connexin43 levels were blunted after icosapent ethyl administration. Provocative arrhythmias in the infarcted rats treated with icosapent ethyl were significantly improved than vehicle. Icosapent ethyl significantly increased GPR120 compared to vehicle after infarction. The effects of icosapent ethyl on superoxide and connexin43 were similar to GPR120 agonist GW9508. Besides, the effects of icosapent ethyl on oxidative‐nitrosative stress and connexin43 phosphorylation were abolished by administering AH‐7614, an inhibitor of GPR120. SIN‐1 abolished the Cx43 phosphorylation of icosapent ethyl without affecting GPR120 levels. Taken together, chronic use of icosapent ethyl after infarction is associated with up‐regulation of connexin43 phosphorylation through a GPR120‐dependent antioxidant pathway and thus plays a beneficial effect on arrhythmogenic response to programmed electrical stimulation.
Collapse
Affiliation(s)
- Wei-Ting Chen
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Syue-Yi Chen
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - De-Wei Wu
- Tainan First Senior High School, Tainan, Taiwan
| | | | - Tsung-Ming Lee
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan.,Department of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
11
|
DURMUŞ M. Fish oil for human health: omega-3 fatty acid profiles of marine seafood species. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.21318] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Fatty Acid-Stimulated Insulin Secretion vs. Lipotoxicity. Molecules 2018; 23:molecules23061483. [PMID: 29921789 PMCID: PMC6100479 DOI: 10.3390/molecules23061483] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022] Open
Abstract
Fatty acid (FA)-stimulated insulin secretion (FASIS) is reviewed here in contrast to type 2 diabetes etiology, resulting from FA overload, oxidative stress, intermediate hyperinsulinemia, and inflammation, all converging into insulin resistance. Focusing on pancreatic islet β-cells, we compare the physiological FA roles with the pathological ones. Considering FAs not as mere amplifiers of glucose-stimulated insulin secretion (GSIS), but as parallel insulin granule exocytosis inductors, partly independent of the KATP channel closure, we describe the FA initiating roles in the prediabetic state that is induced by retardations in the glycerol-3-phosphate (glucose)-promoted glycerol/FA cycle and by the impaired GPR40/FFA1 (free FA1) receptor pathway, specifically in its amplification by the redox-activated mitochondrial phospholipase, iPLA2γ. Also, excessive dietary FAs stimulate intestine enterocyte incretin secretion, further elevating GSIS, even at low glucose levels, thus contributing to diabetic hyperinsulinemia. With overnutrition and obesity, the FA overload causes impaired GSIS by metabolic dysbalance, paralleled by oxidative and metabolic stress, endoplasmic reticulum stress and numerous pro-apoptotic signaling, all leading to decreased β-cell survival. Lipotoxicity is exerted by saturated FAs, whereas ω-3 polyunsaturated FAs frequently exert antilipotoxic effects. FA-facilitated inflammation upon the recruitment of excess M1 macrophages into islets (over resolving M2 type), amplified by cytokine and chemokine secretion by β-cells, leads to an inevitable failure of pancreatic β-cells.
Collapse
|
13
|
Anti-Oxidative Effects of Melatonin Receptor Agonist and Omega-3 Polyunsaturated Fatty Acids in Neuronal SH-SY5Y Cells: Deciphering Synergic Effects on Anti-Depressant Mechanisms. Mol Neurobiol 2018; 55:7271-7284. [DOI: 10.1007/s12035-018-0899-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022]
|
14
|
Huang JP, Cheng ML, Hung CY, Wang CH, Hsieh PS, Shiao MS, Chen JK, Li DE, Hung LM. Docosapentaenoic acid and docosahexaenoic acid are positively associated with insulin sensitivity in rats fed high-fat and high-fructose diets. J Diabetes 2017; 9:936-946. [PMID: 27860326 DOI: 10.1111/1753-0407.12505] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/28/2016] [Accepted: 11/03/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The aim of the present study was to compare insulin resistance and metabolic changes using a global lipidomic approach. METHODS Rats were fed a high-fat diet (HFD) or a high-fructose diet (HFrD) for 12 weeks to induce insulin resistance (IR) syndrome. After 12 weeks feeding, physiological and biochemical parameters were examined. Insulin sensitivity and plasma metabolites were evaluated using a euglycemic-hyperinsulinemic clamp and mass spectrometry, respectively. Pearson's correlation coefficient was used to investigate the strength of correlations. RESULTS Rats on both diets developed IR syndrome, characterized by hypertension, hyperlipidemia, hyperinsulinemia, impaired fasting glucose, and IR. Compared with HFrD-fed rats, non-esterified fatty acids were lower and body weight and plasma insulin levels were markedly higher in HFD-fed rats. Adiposity and plasma leptin levels were increased in both groups. However, the size of adipocytes was greater in HFD- than HFrD-fed rats. Notably, the lipidomic heat map revealed metabolites exhibiting greater differences in HFD- and HFrD-fed rats compared with controls. Plasma adrenic acid levels were higher in HFD- than HFrD-fed rats. Nevertheless, linoleic and arachidonic acid levels decreased in HFrD-fed rats compared with controls. Plasma concentrations of docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) were significantly reduced after feeding of both diets, particularly the HFrD. There was a strong positive correlation between these two fatty acids and the insulin sensitivity index. CONCLUSIONS The systemic lipidomic analysis indicated that a reduction in DHA and DPA was strongly correlated with IR in rats under long-term overnutrition. These results provide a potential therapeutic target for IR and metabolic syndrome.
Collapse
Affiliation(s)
- Jiung-Pang Huang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Mei-Ling Cheng
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Healthy and Aging Research, Chang Gung University, Taoyuan, Taiwan
- Division of Cardiology, Department of Internal Medicine, Heart Failure Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Cheng-Yu Hung
- Center for Healthy and Aging Research, Chang Gung University, Taoyuan, Taiwan
| | - Chao-Hung Wang
- Division of Cardiology, Department of Internal Medicine, Heart Failure Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Po-Shiuan Hsieh
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Shi Shiao
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Healthy and Aging Research, Chang Gung University, Taoyuan, Taiwan
| | - Jan-Kan Chen
- Center for Healthy and Aging Research, Chang Gung University, Taoyuan, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Dai-Er Li
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Li-Man Hung
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Healthy and Aging Research, Chang Gung University, Taoyuan, Taiwan
- Division of Cardiology, Department of Internal Medicine, Heart Failure Center, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
15
|
de Oliveira MR, Nabavi SF, Nabavi SM, Jardim FR. Omega-3 polyunsaturated fatty acids and mitochondria, back to the future. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|