1
|
Zhu T, Chen X, Jiang S. Progress and obstacles in transplantation of brown adipose tissue or engineered cells with thermogenic potential for metabolic benefits. Front Endocrinol (Lausanne) 2023; 14:1191278. [PMID: 37265692 PMCID: PMC10230949 DOI: 10.3389/fendo.2023.1191278] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/27/2023] [Indexed: 06/03/2023] Open
Abstract
Transplantation of brown adipose tissue (BAT), engineered thermogenic progenitor cells, and adipocytes have received much attention for the improvement of obesity and metabolic disorders. However, even though the thermogenic and metabolic potential exists early after transplantation, the whitening of the brown fat graft occurs with metabolic function significantly impaired. In this review, specific experiment designs, graft outcomes, and metabolic benefits for the transplantation of BAT or engineered cells will be discussed. The current advancements will offer guidance to further investigation, and the obstacles appearing in previous studies will require innovation of BAT transplantation methods.
Collapse
|
2
|
Chu DT, Bui NL, Le NH. Adrenoceptors and SCD1 in adipocytes/adipose tissues: The expression and variation in health and obesity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:311-332. [PMID: 36631196 DOI: 10.1016/bs.pmbts.2022.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Obesity, considered a metabolic disorder, is one of the most significant health issues that the community has to cope with today. A rising number of studies have been conducted to find out promising genetic targets for obese treatment. The sympathetic nervous system was proven to possess remarkable roles in energy metabolism, including the stimulation of lipolysis as well as thermogenesis, via distinct adrenoceptors appearing on the membrane of adipocyte. A decrease of β-adrenoceptor expression has been observed in obese individuals, which is related to reducing energy expenditure and developing obesity. While that the deficiency of stearoyl-CoA desaturase-1 (SCD1), which is a promising target for treatments of metabolic diseases, decreases oxidation and promotes the synthesis of fatty acids. Here, we emphasized several differences between distinct adrenoceptor subtypes, including their mRNA expression level and function in white adipose tissue and brown adipose tissue. We also highlighted SCD1's roles related to the progression of adipocytes and its changing expression under the obese condition in both rodents and humans, and furthermore, tried to figure out the interaction between adrenoceptors and SCD1 in adipose tissue.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| | - Nhat-Le Bui
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Ngoc Hoan Le
- Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam
| |
Collapse
|
3
|
Satilmis B, Cicek GS, Cicek E, Akbulut S, Sahin TT, Yilmaz S. Adipose-derived stem cells in the treatment of hepatobiliary diseases and sepsis. World J Clin Cases 2022; 10:4348-4356. [PMID: 35663078 PMCID: PMC9125284 DOI: 10.12998/wjcc.v10.i14.4348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/13/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
Determination of the mesenchymal stem cells is one of the greatest and most exciting achievements that tissue engineering and regenerative medicine have achieved. Adipose-derived mesenchymal stem cells (AD-MSC) are easily isolated and cultured for a long time before losing their stem cell characteristics, which are self-renewal and pluripotency. AD-MSC are mesenchymal stem cells that have pluripotent lineage characteristics. They are easily accessible, and the fraction of stem cells in the adipose tissue lysates is highest among all other sources of mesenchymal stem cells. It is also HLA-DR negative and can be transplanted allogenically without the need for immunosuppression. These advantages have popularized its use in many fields including plastic reconstructive surgery. However, in the field of hepatology and liver transplantation, the progress is slower. AD-MSC have the potential to modulate inflammation, ameliorate ischemia-reperfusion injury, and support liver and biliary tract regeneration. These are very important for the treatment of various hepatobiliary diseases. Furthermore, the anti-inflammatory potential of these cells has paramount importance in the treatment of sepsis. We need alternative therapeutic approaches to treat end-stage liver failure. AD-MSC can provide a means of therapy to bridge to definitive therapeutic alternatives such as liver transplantation. Here we propose to review theoretic applications of AD-MSC in the treatment of hepatobiliary diseases and sepsis.
Collapse
Affiliation(s)
- Basri Satilmis
- Hepatology Research Laboratory, Liver Transplant Institute, Inonu University, Malatya 44000, Battalgazi, Turkey
- Department of Biochemistry, Faculty of Pharmacy, Inonu University, Malatya 44000, Battalgazi, Turkey
| | - Gizem Selen Cicek
- Department of Anesthesiology and Reanimation, Malatya Training and Research Hospital, Malatya 44000, Yesilyurt, Turkey
| | - Egemen Cicek
- Liver Transplant Institute, Inonu University, Malatya 44000, Battalgazi, Turkey
| | - Sami Akbulut
- Liver Transplant Institute, Inonu University, Malatya 44000, Battalgazi, Turkey
| | - Tevfik Tolga Sahin
- Hepatology Research Laboratory, Liver Transplant Institute, Inonu University, Malatya 44000, Battalgazi, Turkey
- Liver Transplant Institute, Inonu University, Malatya 44000, Battalgazi, Turkey
| | - Sezai Yilmaz
- Hepatology Research Laboratory, Liver Transplant Institute, Inonu University, Malatya 44000, Battalgazi, Turkey
- Liver Transplant Institute, Inonu University, Malatya 44000, Battalgazi, Turkey
| |
Collapse
|
4
|
Fang W, Deng Z, Benadjaoud F, Yang D, Yang C, Shi GP. Regulatory T cells promote adipocyte beiging in subcutaneous adipose tissue. FASEB J 2020; 34:9755-9770. [PMID: 32510702 DOI: 10.1096/fj.201902518r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 04/28/2020] [Accepted: 05/16/2020] [Indexed: 12/28/2022]
Abstract
Regulatory T cells (Tregs) play essential roles in obesity and diabetes. Here, we report a role of Tregs in enhancing β3-adrenergic receptor agonist CL316243 (CL)-stimulated thermogenic program in subcutaneous adipose tissue (SAT), but not in visceral fat. CL treatment for 7 days increased SAT adipocyte beiging and thermogenic gene expression in male or female mice. Adoptive transfer of Tregs enhanced this CL activity. Such Treg activity lost in male epididymal white adipose tissue (eWAT) and female gonadal gWAT. Adipocyte culture yielded the same conclusion. Tregs enhanced the expression of CL-induced thermogenic genes in SAT from male and female mice. This activity of Tregs reduced or disappeared in adipocytes from eWAT or gWAT. Both CL and Tregs induced much higher UCP-1 (uncoupling protein-1) expression in SAT from females than that from males. A mechanistic study demonstrated a role of Tregs in suppressing the expression of M1 macrophage markers (Tnfa, Il6, iNos, Ip10) and promoting the expression of M2 macrophage markers (Mrc1, Arg1, Il10) in bone-marrow-derived macrophages or in SAT from male or female mice. In female mice with pre-established obesity, Treg adoptive transfer reduced the gWAT weight in 2 weeks. Together with CL treatment, Treg adoptive transfer reduced the SAT weight and further improved CL-induced glucose metabolism and insulin sensitivity in female obese mice, but did not affect CL-induced body weight loss in male or female obese mice. This study revealed a predominant role of Tregs in female mice in promoting adipocyte beiging and thermogenesis in SAT, in part by slanting M2 macrophage polarization.
Collapse
Affiliation(s)
- Wenqian Fang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Zhiyong Deng
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Geriatrics, National Key Clinic Specialty, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Feriel Benadjaoud
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dafeng Yang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Chongzhe Yang
- Department of Geriatrics, National Key Clinic Specialty, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Qian S, Pan J, Su Y, Tang Y, Wang Y, Zou Y, Zhao Y, Ma H, Zhang Y, Liu Y, Guo L, Tang QQ. BMPR2 promotes fatty acid oxidation and protects white adipocytes from cell death in mice. Commun Biol 2020; 3:200. [PMID: 32350411 PMCID: PMC7190840 DOI: 10.1038/s42003-020-0928-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Adipocyte cell death is pathologically involved in both obesity and lipodystrophy. Inflammation and pro-inflammatory cytokines are generally regarded as inducers for adipocyte apoptosis, but whether some innate defects affect their susceptibility to cell death has not been extensively studied. Here, we found bone morphogenetic protein receptor type 2 (BMPR2) knockout adipocytes were prone to cell death, which involved both apoptosis and pyroptosis. BMPR2 deficiency in adipocytes inhibited phosphorylation of perilipin, a lipid-droplet-coating protein, and impaired lipolysis when stimulated by tumor necrosis factor (TNFα), which lead to failure of fatty acid oxidation and oxidative phosphorylation. In addition, impaired lipolysis was associated with mitochondria-mediated apoptosis and pyroptosis as well as elevated inflammation. These results suggest that BMPR2 is important for maintaining the functional integrity of adipocytes and their ability to survive when interacting with inflammatory factors, which may explain why adipocytes among individuals show discrepancy for death responses in inflammatory settings.
Collapse
Affiliation(s)
- Shuwen Qian
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Jiabao Pan
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Yan Su
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200032, Shanghai, China
| | - Yan Tang
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Yina Wang
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Ying Zou
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Yaxin Zhao
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Hong Ma
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Youyou Zhang
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, PA, USA
| | - Yang Liu
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Liang Guo
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Qi-Qun Tang
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
6
|
Tien NLB, Hoa ND, Thanh VV, Thach NV, Ngoc VTN, Dinh TC, Phuong TNT, Toi PL, Chu DT. Autologous Transplantation of Adipose-Derived Stem Cells to Treat Acute Spinal Cord Injury: Evaluation of Clinical Signs, Mental Signs, and Quality of Life. Open Access Maced J Med Sci 2019; 7:4399-4405. [PMID: 32215102 PMCID: PMC7084027 DOI: 10.3889/oamjms.2019.843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUD Spinal cord injury (SCI) is damage that can cause a temporary or permanent change in spinal cord functions. AIM: This work evaluates clinical signs, mental signs, and quality of life (QoL) after autologous adipose-derived stem cells (ADSCs) transplantation to treat acute spinal cord injury (SCI). METHODS: In this study, 47 SCI patients were recruited and divided into two groups: intervention and control. ADSCs were isolated and cultured under the cell culture quality control procedure. All patients in both groups underwent neurosurgery with or without ADSC transplantation. The recovery regarding neurological muscle, QoL, neurogenic bladder, and mental improvement was assessed after transplantation. RESULTS: All patients had improved in terms of motor function, bladder function, and daily living. No patients reported any side effect. MRI imaging showed significant changes in the lesion length of the spinal canal and the thickening of the spinal cord. Mental improvement was highest at six months after transplantation and lowest at one month after transplantation. The proportion of patients whose quality of life improved after treatment was 100%, while 80% of patients were satisfied with treatment outcomes. CONCLUSIONS Thus, our data suggested that ADSCs transplantation was safe and effective for the treatment of SCI patients. Neurological muscle and neurogenic bladder were improved significantly after transplantation.
Collapse
Affiliation(s)
- Nguyen Le Bao Tien
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi, Vietnam
| | - Nguyen Dinh Hoa
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi, Vietnam
| | - Vo Van Thanh
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi, Vietnam
| | | | | | - Thien Chu Dinh
- Institute for Research and Development, Duy Tan University, Danang, Vietnam
| | - Thuy Nguyen Thi Phuong
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea
| | - Phung Lam Toi
- Health Strategy and Policy Institute, Ministry of Health, Hanoi, Vietnam
| | - Dinh Toi Chu
- Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam
| |
Collapse
|
7
|
Chu DT, Phuong TNT, Tien NLB, Tran DK, Nguyen TT, Thanh VV, Quang TL, Minh LB, Pham VH, Ngoc VTN, Kushekhar K, Chu-Dinh T. The Effects of Adipocytes on the Regulation of Breast Cancer in the Tumor Microenvironment: An Update. Cells 2019; 8:E857. [PMID: 31398937 PMCID: PMC6721665 DOI: 10.3390/cells8080857] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/27/2019] [Accepted: 08/06/2019] [Indexed: 12/24/2022] Open
Abstract
Obesity is a global pandemic and it is well evident that obesity is associated with the development of many disorders including many cancer types. Breast cancer is one of that associated with a high mortality rate. Adipocytes, a major cellular component in adipose tissue, are dysfunctional during obesity and also known to promote breast cancer development both in vitro and in vivo. Dysfunctional adipocytes can release metabolic substrates, adipokines, and cytokines, which promote proliferation, progression, invasion, and migration of breast cancer cells. The secretion of adipocytes can alter gene expression profile, induce inflammation and hypoxia, as well as inhibit apoptosis. It is known that excessive free fatty acids, cholesterol, triglycerides, hormones, leptin, interleukins, and chemokines upregulate breast cancer development. Interestingly, adiponectin is the only adipokine that has anti-tumor properties. Moreover, adipocytes are also related to chemotherapeutic resistance, resulting in the poorer outcome of treatment and advanced stages in breast cancer. Evaluation of the adipocyte secretion levels in the circulation can be useful for prognosis and evaluation of the effectiveness of cancer therapy in the patients. Therefore, understanding about functions of adipocytes as well as obesity in breast cancer may reveal novel targets that support the development of new anti-tumor therapy. In this systemic review, we summarize and update the effects of secreted factors by adipocytes on the regulation of breast cancer in the tumor microenvironment.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam.
- School of Odonto Stomatology, Hanoi Medical University, Hanoi 100000, Vietnam.
- Former address: Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, 0349 Oslo, Norway.
| | - Thuy Nguyen Thi Phuong
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea
| | - Nguyen Le Bao Tien
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam
| | - Dang-Khoa Tran
- Department of Anatomy, University of Medicine Pham Ngoc Thach, Ho Chi Minh City 700000, Vietnam
| | - Tran-Thuy Nguyen
- Department of Cardiovascular and Thoracic Surgery, Cardiovascular Center, E Hospital, Hanoi 100000, Vietnam
- School of Medicine and Pharmacy, Vietnam National University, Hanoi 100000, Vietnam
| | - Vo Van Thanh
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam
- Department of Surgery, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Thuy Luu Quang
- Center for Anesthesia and Surgical Intensive Care, Viet Duc Hospital, Hanoi 100000, Vietnam
| | - Le Bui Minh
- NTT Hi-tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh St., Ward 13, District 4, Ho Chi Minh City 700000, Vietnam
| | - Van Huy Pham
- AI Lab, Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| | - Vo Truong Nhu Ngoc
- School of Odonto Stomatology, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Kushi Kushekhar
- Institute of Cancer Research, Oslo University Hospital, 0310 Oslo, Norway
| | - Thien Chu-Dinh
- Institute for Research and Development, Duy Tan University, Danang 550000, Vietnam.
| |
Collapse
|
8
|
Chu DT, Nguyen Thi Phuong T, Tien NLB, Tran DK, Minh LB, Thanh VV, Gia Anh P, Pham VH, Thi Nga V. Adipose Tissue Stem Cells for Therapy: An Update on the Progress of Isolation, Culture, Storage, and Clinical Application. J Clin Med 2019; 8:E917. [PMID: 31247996 PMCID: PMC6678927 DOI: 10.3390/jcm8070917] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/10/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue stem cells (ASCs), known as multipotent stem cells, are most commonly used in the clinical applications in recent years. Adipose tissues (AT) have the advantage in the harvesting, isolation, and expansion of ASCs, especially an abundant amount of stem cells compared to bone marrow. ASCs can be found in stromal vascular fractions (SVF) which are easily obtained from the dissociation of adipose tissue. Both SVFs and culture-expanded ASCs exhibit the stem cell characteristics such as differentiation into multiple cell types, regeneration, and immune regulators. Therefore, SVFs and ASCs have been researched to evaluate the safety and benefits for human use. In fact, the number of clinical trials on ASCs is going to increase by years; however, most trials are in phase I and II, and lack phase III and IV. This systemic review highlights and updates the process of the harvesting, characteristics, isolation, culture, storage, and application of ASCs, as well as provides further directions on the therapeutic use of ASCs.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam.
- School of Odonto Stomatology, Hanoi Medical University, Hanoi 100000, Vietnam.
| | - Thuy Nguyen Thi Phuong
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea
| | - Nguyen Le Bao Tien
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam
| | - Dang Khoa Tran
- Department of Anatomy, University of Medicine Pham Ngoc Thach, Ho Chi Minh City 700000, Vietnam
| | - Le Bui Minh
- NTT Hi-tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh St., Ward 13, District 4, Ho Chi Minh City 700000, Vietnam
| | - Vo Van Thanh
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam
- Department of Surgery, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Pham Gia Anh
- Oncology Department, Viet Duc Hospital, Hanoi 100000, Vietnam
| | - Van Huy Pham
- AI Lab, Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| | - Vu Thi Nga
- Institute for Research and Development, Duy Tan University, Danang 550000, Vietnam.
| |
Collapse
|
9
|
Dinh TC, Thi Phuong TN, Minh LB, Minh Thuc VT, Bac ND, Van Tien N, Pham VH, Show PL, Tao Y, Nhu Ngoc VT, Bich Ngoc NT, Jurgoński A, Thimiri Govinda Raj DB, Van Tu P, Ha VN, Czarzasta J, Chu DT. The effects of green tea on lipid metabolism and its potential applications for obesity and related metabolic disorders - An existing update. Diabetes Metab Syndr 2019; 13:1667-1673. [PMID: 31336539 DOI: 10.1016/j.dsx.2019.03.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/13/2019] [Indexed: 12/20/2022]
Abstract
Obesity is one of the top global issues, which induces several serious health consequences both physically and mentally, such as type 2 diabetes, cardiovascular diseases, dyslipidemia, eating disorders, depression and stress. However, the effective therapy to prevent and treat obesity and overweight, up to now, cannot be found nowadays. Several methods/medicines namely diet control, energy balance, environmental changes, genetic and stem cell therapies, new drugs/chemicals have been extensively studied to enhance the ability to control bodyweight and prevent obesity. Of all the aforementioned methods, green tea, used as a daily beverage, has shown beneficial impacts for the health, especially its anti-obesity effects. Available evidence shows that green tea can interrupt lipid emulsification, reduce adipocyte differentiation, increase thermogenesis, and reduce food intake, thus green tea improves the systemic metabolism and decreases fat mass. Here, we highlight and sum up the update investigations of anti-obesity effect of green tea as well as discuss the potential application of them for preventing obesity and its related metabolic disorders.
Collapse
Affiliation(s)
- Thien Chu Dinh
- Institute for Research and Development, Duy Tan University, Danang, Viet Nam
| | - Thuy Nguyen Thi Phuong
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, South Korea
| | - Le Bui Minh
- NTT Hi-tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh St., Ward 13, District 4, Ho Chi Minh City, Viet Nam
| | | | | | - Nguyen Van Tien
- 103 Military Central Hospital, Vietnam Military Medical University Hanoi, Viet Nam
| | - Van Huy Pham
- AI Lab, Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 8, 210095, China
| | | | | | - Adam Jurgoński
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Poland
| | | | - Pham Van Tu
- Faculty of Biology, Hanoi National University of Education, Hanoi, Viet Nam
| | - Vu Ngoc Ha
- Vietnam Academy of Social Sciences, Hanoi, Viet Nam
| | - Joanna Czarzasta
- Department of Pathophysiology, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Dinh-Toi Chu
- School of Odonto Stomatology, Hanoi Medical University, Hanoi, Viet Nam; Faculty of Biology, Hanoi National University of Education, Hanoi, Viet Nam.
| |
Collapse
|