1
|
Ning J, Sala M, Reina J, Kalagiri R, Hunter T, McCullough BS. Histidine Phosphorylation: Protein Kinases and Phosphatases. Int J Mol Sci 2024; 25:7975. [PMID: 39063217 PMCID: PMC11277029 DOI: 10.3390/ijms25147975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Phosphohistidine (pHis) is a reversible protein post-translational modification (PTM) that is currently poorly understood. The P-N bond in pHis is heat and acid-sensitive, making it more challenging to study than the canonical phosphoamino acids pSer, pThr, and pTyr. As advancements in the development of tools to study pHis have been made, the roles of pHis in cells are slowly being revealed. To date, a handful of enzymes responsible for controlling this modification have been identified, including the histidine kinases NME1 and NME2, as well as the phosphohistidine phosphatases PHPT1, LHPP, and PGAM5. These tools have also identified the substrates of these enzymes, granting new insights into previously unknown regulatory mechanisms. Here, we discuss the cellular function of pHis and how it is regulated on known pHis-containing proteins, as well as cellular mechanisms that regulate the activity of the pHis kinases and phosphatases themselves. We further discuss the role of the pHis kinases and phosphatases as potential tumor promoters or suppressors. Finally, we give an overview of various tools and methods currently used to study pHis biology. Given their breadth of functions, unraveling the role of pHis in mammalian systems promises radical new insights into existing and unexplored areas of cell biology.
Collapse
Affiliation(s)
- Jia Ning
- Correspondence: (J.N.); (B.S.M.)
| | | | | | | | | | - Brandon S. McCullough
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; (M.S.); (J.R.); (R.K.); (T.H.)
| |
Collapse
|
2
|
Zhao Y, Liu H, Zhan Q, Jin H, Wang Y, Wang H, Huang B, Huang F, Jia X, Wang Y, Wang X. Oncolytic adenovirus encoding LHPP exerts potent antitumor effect in lung cancer. Sci Rep 2024; 14:13108. [PMID: 38849383 PMCID: PMC11161505 DOI: 10.1038/s41598-024-63325-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
LHPP has been shown to be a new tumor suppressor, and has a tendency to be under-expressed in a variety of cancers. Oncolytic virotheray is a promising therapeutics for lung cancer in recent decade years. Here we successfully constructed a new recombinant oncolytic adenovirus GD55-LHPP and investigated the effect of GD55-LHPP on the growth of lung cancer cells in vitro and in vivo. The results showed that LHPP had lower expression in either lung cancer cells or clinical lung cancer tissues compared with normal cells or tissues, and GD55-LHPP effectively mediated LHPP expression in lung cancer cells. GD55-LHPP could effectively inhibit the proliferation of lung cancer cell lines and rarely affected normal cell growth. Mechanically, the oncolytic adenovirus GD55-LHPP was able to induce stronger apoptosis of lung cancer cells compared with GD55 through the activation of caspase signal pathway. Notably, GD55-LHPP also activated autophagy-related signal pathway. Further, GD55-LHPP efficiently inhibited tumor growth in lung cancer xenograft in mice and prolonged animal survival rate compared with the control GD55 or PBS. In conclusion, the novel construct GD55-LHPP provides a valuable strategy for lung cancer-targeted therapy and develop the role of tumor suppress gene LHPP in lung cancer gene therapy.
Collapse
Affiliation(s)
- Yaru Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Oncology Department, Zhejiang Xiaoshan HospitaI, Hangzhou, China
| | - Huihui Liu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qi Zhan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hao Jin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yiqiang Wang
- Surgical Department of Duchang County Second People's Hospital, Jiujiang, 332600, China
| | - Hui Wang
- Oncology Department, Zhejiang Xiaoshan HospitaI, Hangzhou, China
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Fang Huang
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Xiaoyuan Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Yigang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Xiaoyan Wang
- Oncology Department, Zhejiang Xiaoshan HospitaI, Hangzhou, China.
| |
Collapse
|
3
|
Zhang Z, Wang X, Liu Y, Wu H, Zhu X, Ye C, Ren H, Chong W, Shang L, Li L. Phospholysine phosphohistidine inorganic pyrophosphate phosphatase suppresses insulin-like growth factor 1 receptor expression to inhibit cell adhesion and proliferation in gastric cancer. MedComm (Beijing) 2024; 5:e472. [PMID: 38292328 PMCID: PMC10827000 DOI: 10.1002/mco2.472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 12/01/2023] [Accepted: 01/01/2024] [Indexed: 02/01/2024] Open
Abstract
Phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) has recently emerged as a novel tumor suppressor. Researchers have observed that LHPP plays a crucial role in inhibiting proliferation, growth, migration, invasion, and cell metabolism across various cancers. Nevertheless, the specific functions and underlying mechanisms of LHPP as a tumor suppressor in gastric cancer (GC) require further exploration. The expression of LHPP was assessed in human GC specimens and cell lines. Various assays were employed to evaluate the impact of LHPP on GC cells. RNA sequencing and Gene Set Enrichment Analysis were conducted to unravel the mechanism through which LHPP regulates GC cell behavior. Additionally, xenograft nude mouse models were utilized to investigate the in vivo effects of LHPP. The findings indicate that LHPP, functioning as a tumor suppressor, is downregulated in both GC tissues and cells. LHPP emerges as an independent risk factor for GC patients, and its expression level exhibits a positive correlation with patient prognosis. LHPP exerts inhibitory effects on the adhesion and proliferation of GC cells by suppressing the expression of insulin-like growth factor 1 receptor (IGF1R) and modulating downstream signaling pathways. Consequently, LHPP holds potential as a biomarker for targeted therapy involving IGF1R inhibition in GC patients.
Collapse
Affiliation(s)
- Zihao Zhang
- Department of Gastrointestinal SurgeryShandong Provincial HospitalShandong UniversityJinanShandongChina
- Department of General SurgeryZhongshan HospitalFudan UniversityShanghaiChina
| | - Xu Wang
- Department of AnesthesiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Yuan Liu
- Department of Gastrointestinal SurgeryShandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Hao Wu
- Department of Gastrointestinal SurgeryShandong Provincial HospitalShandong UniversityJinanShandongChina
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Department of General SurgeryPeking Union Medical CollegePeking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| | - Xingyu Zhu
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Chunshui Ye
- Department of Gastrointestinal SurgeryShandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Huicheng Ren
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Wei Chong
- Department of Gastrointestinal SurgeryShandong Provincial HospitalShandong UniversityJinanShandongChina
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesShandongChina
- Key Laboratory of Engineering of Shandong ProvinceShandong Provincial HospitalJinanShandongChina
| | - Liang Shang
- Department of Gastrointestinal SurgeryShandong Provincial HospitalShandong UniversityJinanShandongChina
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesShandongChina
- Key Laboratory of Engineering of Shandong ProvinceShandong Provincial HospitalJinanShandongChina
| | - Leping Li
- Department of Gastrointestinal SurgeryShandong Provincial HospitalShandong UniversityJinanShandongChina
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesShandongChina
- Key Laboratory of Engineering of Shandong ProvinceShandong Provincial HospitalJinanShandongChina
| |
Collapse
|
4
|
Ruifang D, Changqing Y, Chenxia R, Ji L, Zibai W. Phospholysine phosphohistidine inorganic pyrophosphate phosphatase suppresses human esophageal cancer cell growth by inducing mitotic catastrophe through the P27/cyclin A/CDK2 signaling pathway. Acta Histochem 2023; 125:152066. [PMID: 37348327 DOI: 10.1016/j.acthis.2023.152066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
Esophageal cancer (ESCA) is a global dead malignancy with poor prognosis. However, its underlying molecular mechanism remains to be elucidated. Phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) has been reported as a tumor suppressor in multisystem cancer but its function in ESCA has not been reported. We analyzed LHPP expression between normal and tumor tissues of ESCA patients and performed LHPP overexpression on the ESCA cells KYSE-150 (K150). We did not observe significant differences in the expression level of LHPP between ESCA and normal tissue, and noticed that LHPP expression was not related to ESCA patient survival rate. However, increased expression of LHPP in K150 cells induced mitochondrial dysfunction, inhibited cell proliferation, migration, and cell cycle, and simultaneously increased cell apoptosis. Besides, we found that K150 cells underwent mitotic catastrophe after overexpressing LHPP, which may be regulated through the P27/cyclin A/cdk2 signaling pathway. Although the expression of LHPP may not be related to the progression and prognosis of ESCA, mitotic catastrophe, a new mechanism of tumor suppressor function of LHPP was found after overexpressing LHPP in ESCA cells. DATA AVAILABILITY: The data used to support the findings of this study are included within the article.
Collapse
Affiliation(s)
- Duan Ruifang
- College Central Laboratory, Changzhi Medical College, Changzhi, Shanxi, China
| | - Yang Changqing
- Department of Gastroenterology, He Ping Hospital affiliated to Changzhi Medical College, Changzhi, Shanxi, China.
| | - Ren Chenxia
- College Central Laboratory, Changzhi Medical College, Changzhi, Shanxi, China
| | - Li Ji
- Department of Gastroenterology, He Ping Hospital affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Wei Zibai
- Department of Gastroenterology, He Ping Hospital affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| |
Collapse
|
5
|
Zhu H, Song C, Li J, Liu Q, Liu M, Fu L. LHPP suppresses proliferation, migration, and invasion in hepatocellular carcinoma and pancreatic cancer by inhibiting EGFR signaling pathway. Med Oncol 2023; 40:257. [PMID: 37522936 DOI: 10.1007/s12032-023-02127-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
Phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) has been reported to be a new tumor suppressor with a significant inhibitory effect in various cancers. Although LHPP has been repeatedly shown to inhibit the progression of various tumors by inhibiting the phosphorylation of AKT, up to now, the studies on the function and mechanism of LHPP in tumors are insufficient. In this study, LHPP expression was found to be downregulated in both hepatocellular carcinoma (HCC) and pancreatic cancer (PC). Here, we found that LHPP could bind to epidermal growth factor receptor (EGFR) and inhibit its phosphorylation, which thereby inhibited the activation of EGFR downstream pathways ERK, AKT, and STAT3, and then weakening the ability to proliferate, invade, and migrate in HCC and PC. This paper showed a new physiological function of LHPP in inhibiting phosphorylation of EGFR and its potential anti-tumor mechanism and indicated that LHPP was a potential therapeutic target for HCC and PC.
Collapse
Affiliation(s)
- Haitao Zhu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, China.
- Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, China.
- Biobank, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, China.
| | - Chunzhuo Song
- Guizhou Medical University, Guiyang, 550001, Guizhou, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Junjun Li
- Guizhou Medical University, Guiyang, 550001, Guizhou, China
- Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, China
| | - Qianfan Liu
- Guizhou Medical University, Guiyang, 550001, Guizhou, China
- Department of General Surgery, Northern Jiangsu People's Hospital, Yangzhou, 225000, Jiangsu, China
| | - Meng Liu
- Guizhou Medical University, Guiyang, 550001, Guizhou, China
| | - Liyue Fu
- Guizhou Medical University, Guiyang, 550001, Guizhou, China
| |
Collapse
|
6
|
Xia Z, Zhao S, Gao X, Sun H, Yang F, Zhu H, Gao H, Lu J, Zhou X. LHPP Inhibits the Viability, Migration, and Proliferation of PDAC Cells and Significantly Affects the Expression of SDC1 and S100p. Technol Cancer Res Treat 2023; 22:15330338231177807. [PMID: 37321804 PMCID: PMC10278439 DOI: 10.1177/15330338231177807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023] Open
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a poor response to chemotherapy and an extremely poor prognosis. Recent studies have revealed that phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) can inhibit the growth of various cancers. Therefore, the current study was conducted to investigate the antitumor effects of LHPP in PDAC and to explore its mechanism using proteomics analysis. METHODS AND RESULTS Immunohistochemical analysis of clinical samples demonstrated that LHPP expression levels were lower in tumor tissues compared to adjacent nontumor tissues. Moreover, multivariate COX regression analysis showed that LHPP expression level was an independent prognostic factor for the patients with PDAC. Patients with high LHPP expression had a better prognosis. The lentiviral vectors for normal control (NC), LHPP knockdown (KD), and LHPP overexpression (OE) were infected with BxPC-3 and PANC-1 cell lines. Cell counting kit-8 assay, Transwell assay, and flow cytometry analyses showed that LHPP overexpression significantly inhibited the cell viability, migration, and proliferation of BxPC-3 and PANC-1 cells. Moreover, xenograft tumor model demonstrated that LHPP overexpression inhibited xenograft tumor growth in vivo. Subsequently, proteins with significantly altered expression in BxPC-3 cells after lentivirus infection were detected using proteomics analyses. Interestingly, compared to the NC group, the expression of Syndecan 1 (SDC1) was significantly upregulated in the KD group, while that of S100P was significantly downregulated in the OE group. CONCLUSION LHPP might emerge as an important target for delaying the advancement of PDAC, thereby providing a novel therapeutic approach for the treatment of PDAC.
Collapse
Affiliation(s)
- Zhaozhi Xia
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuchao Zhao
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xin Gao
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongrui Sun
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Faji Yang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Huaqiang Zhu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hengjun Gao
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jun Lu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xu Zhou
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|