1
|
Blázquez M, Pérez-Vargas I, Garrido-Benavent I, Villar-dePablo M, Turégano Y, Frías-López C, Sánchez-Gracia A, de los Ríos A, Gasulla F, Pérez-Ortega S. Endless forms most frustrating: disentangling species boundaries in the Ramalina decipiens group ( Lecanoromycetes, Ascomycota), with the description of six new species and a key to the group. PERSOONIA 2024; 52:44-93. [PMID: 39161630 PMCID: PMC11319839 DOI: 10.3767/persoonia.2024.52.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/08/2023] [Accepted: 11/15/2023] [Indexed: 08/21/2024]
Abstract
Oceanic islands have been recognized as natural laboratories in which to study a great variety of evolutionary processes. One such process is evolutionary radiations, the diversification of a single ancestor into a number of species that inhabit different environments and differ in the traits that allow them to exploit those environments. The factors that drive evolutionary radiations have been studied for decades in charismatic organisms such as birds or lizards, but are lacking in lichen-forming fungi, despite recent reports of some lineages showing diversification patterns congruent with radiation. Here we propose the Ramalina decipiens group as a model system in which to carry out such studies. This group is currently thought to be comprised of five saxicolous species, all of them endemic to the Macaronesian region (the Azores, Madeira, Selvagens, Canary and Cape Verde islands). Three species are single-island endemics (a rare geographic distribution pattern in lichens), whereas two are widespread and show extreme morphological variation. The latter are suspected to harbor unrecognized species-level lineages. In order to use the Ramalina decipiens group as a model system it is necessary to resolve the group's phylogeny and to clarify its species boundaries. In this study we attempt to do so following an integrative taxonomy approach. We constructed a phylogenetic tree based on six molecular markers, four of which are newly developed and generated competing species hypotheses based on molecular (species discovery strategies based on both single locus and multilocus datasets) and phenotypic data (unsupervised clustering algorithms based on morphology, secondary chemistry and geographic origin). We found that taxonomic diversity in the Ramalina decipiens group has been highly underestimated in previous studies. In consequence, we describe six new species, most of them single-island endemics and provide a key to the group. Phylogenetic relationships among species have been reconstructed with almost full support which, coupled with the endemic character of the group, makes it an excellent system for the study of island radiations in lichen-forming fungi. Citation: Blázquez M, Pérez-Vargas I, Garrido-Benavent I, et al. 2024. Endless forms most frustrating: disentangling species boundaries in the Ramalina decipiens group (Lecanoromycetes, Ascomycota), with the description of six new species and a key to the group. Persoonia 52: 44-93. https://doi.org/10.3767/persoonia.2024.52.03 .
Collapse
Affiliation(s)
- M. Blázquez
- Department of Mycology, Real Jardín Botánico (CSIC), Madrid, Spain
| | - I. Pérez-Vargas
- Department of Botany, Ecology and Plant Physiology, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - I. Garrido-Benavent
- Departament de Botànica i Geologia, Facultat de Ciències Biològiques, Universitat de València (UV), València, Spain
| | - M. Villar-dePablo
- Department of Microbial Ecology and Geomicrobiology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Y. Turégano
- Department of Mycology, Real Jardín Botánico (CSIC), Madrid, Spain
| | - C. Frías-López
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - A. Sánchez-Gracia
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - A. de los Ríos
- Department of Microbial Ecology and Geomicrobiology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - F. Gasulla
- Department of Life Sciences, Universidad de Alcalá, Alcalá de Henares, Spain
| | - S. Pérez-Ortega
- Department of Mycology, Real Jardín Botánico (CSIC), Madrid, Spain
| |
Collapse
|
2
|
Twelve New Species Reveal Cryptic Diversification in Foliicolous Lichens of Strigula s.lat. ( Strigulales, Ascomycota). J Fungi (Basel) 2021; 8:jof8010002. [PMID: 35049942 PMCID: PMC8781847 DOI: 10.3390/jof8010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 11/24/2022] Open
Abstract
We employed a molecular phylogenetic approach using five markers (ITS, nuSSU, nuLSU, TEF1-α, and RPB2) to assess potential cryptic speciation in foliicolous members of Strigula s.lat. (Strigulaceae), including the recently segregated genera Phylloporis, Puiggariella, Raciborskiella, Racoplaca, and Serusiauxiella, from tropical areas in Asia, with selected materials from the Neotropics as reference. On the basis of combined molecular and phenotypic datasets, two new species of Racoplaca and 10 new species of Strigula s.str. are described: Racoplaca macrospora sp. nov., R. maculatoides sp. nov., Strigula guangdongensis sp. nov., S. intermedia sp. nov., S. laevis sp. nov., S. microcarpa sp. nov., S. pseudoantillarum sp. nov., S. pseudosubtilissima sp. nov., S. pycnoradians sp. nov., S. sinoconcreta sp. nov., S. stenoloba sp. nov., and S. subtilissimoides sp. nov. In addition, we propose the new combination Phylloporis palmae comb. nov. (≡ =Manaustrum palmae) and we validate the earlier combination Racoplaca melanobapha comb. nov. (≡ Verrucaria melanobapha; Strigula melanobapha). Our data clearly indicate a considerable degree of cryptic diversification in foliicolous representatives of Strigula s.lat., particularly in the presumably widespread taxa Strigula antillarum, S. concreta, S. nitidula, and S. smaragdula. Given that these phylogenetic revisions are thus far limited to few regions, we predict that our findings only represent the proverbial tip of the iceberg in this group of lichenized fungi.
Collapse
|
3
|
Lücking R, Leavitt SD, Hawksworth DL. Species in lichen-forming fungi: balancing between conceptual and practical considerations, and between phenotype and phylogenomics. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00477-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AbstractLichens are symbiotic associations resulting from interactions among fungi (primary and secondary mycobionts), algae and/or cyanobacteria (primary and secondary photobionts), and specific elements of the bacterial microbiome associated with the lichen thallus. The question of what is a species, both concerning the lichen as a whole and its main fungal component, the primary mycobiont, has faced many challenges throughout history and has reached new dimensions with the advent of molecular phylogenetics and phylogenomics. In this paper, we briefly revise the definition of lichens and the scientific and vernacular naming conventions, concluding that the scientific, Latinized name usually associated with lichens invariably refers to the primary mycobiont, whereas the vernacular name encompasses the entire lichen. Although the same lichen mycobiont may produce different phenotypes when associating with different photobionts or growing in axenic culture, this discrete variation does not warrant the application of different scientific names, but must follow the principle "one fungus = one name". Instead, broadly agreed informal designations should be used for such discrete morphologies, such as chloromorph and cyanomorph for lichens formed by the same mycobiont but with either green algae or cyanobacteria. The taxonomic recognition of species in lichen-forming fungi is not different from other fungi and conceptual and nomenclatural approaches follow the same principles. We identify a number of current challenges and provide recommendations to address these. Species delimitation in lichen-forming fungi should not be tailored to particular species concepts but instead be derived from empirical evidence, applying one or several of the following principles in what we call the LPR approach: lineage (L) coherence vs. divergence (phylogenetic component), phenotype (P) coherence vs. divergence (morphological component), and/or reproductive (R) compatibility vs. isolation (biological component). Species hypotheses can be established based on either L or P, then using either P or L (plus R) to corroborate them. The reliability of species hypotheses depends not only on the nature and number of characters but also on the context: the closer the relationship and/or similarity between species, the higher the number of characters and/or specimens that should be analyzed to provide reliable delimitations. Alpha taxonomy should follow scientific evidence and an evolutionary framework but should also offer alternative practical solutions, as long as these are scientifically defendable. Taxa that are delimited phylogenetically but not readily identifiable in the field, or are genuinely cryptic, should not be rejected due to the inaccessibility of proper tools. Instead, they can be provisionally treated as undifferentiated complexes for purposes that do not require precise determinations. The application of infraspecific (gamma) taxonomy should be restricted to cases where there is a biological rationale, i.e., lineages of a species complex that show limited phylogenetic divergence but no evidence of reproductive isolation. Gamma taxonomy should not be used to denote discrete phenotypical variation or ecotypes not warranting the distinction at species level. We revise the species pair concept in lichen-forming fungi, which recognizes sexually and asexually reproducing morphs with the same underlying phenotype as different species. We conclude that in most cases this concept does not hold, but the actual situation is complex and not necessarily correlated with reproductive strategy. In cases where no molecular data are available or where single or multi-marker approaches do not provide resolution, we recommend maintaining species pairs until molecular or phylogenomic data are available. This recommendation is based on the example of the species pair Usnea aurantiacoatra vs. U. antarctica, which can only be resolved with phylogenomic approaches, such as microsatellites or RADseq. Overall, we consider that species delimitation in lichen-forming fungi has advanced dramatically over the past three decades, resulting in a solid framework, but that empirical evidence is still missing for many taxa. Therefore, while phylogenomic approaches focusing on particular examples will be increasingly employed to resolve difficult species complexes, broad screening using single barcoding markers will aid in placing as many taxa as possible into a molecular matrix. We provide a practical protocol how to assess and formally treat taxonomic novelties. While this paper focuses on lichen fungi, many of the aspects discussed herein apply generally to fungal taxonomy. The new combination Arthonia minor (Lücking) Lücking comb. et stat. nov. (Bas.: Arthonia cyanea f. minor Lücking) is proposed.
Collapse
|
4
|
MicroCT as a Useful Tool for Analysing the 3D Structure of Lichens and Quantifying Internal Cephalodia in Lobaria pulmonaria. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol1020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
High-resolution X-ray computer tomography (microCT) is a well-established technique to analyse three-dimensional microstructures in 3D non-destructive imaging. The non-destructive three-dimensional analysis of lichens is interesting for many reasons. The examination of hidden structural characteristics can, e.g., provide information on internal structural features (form and distribution of fungal-supporting tissue/hypha), gas-filled spaces within the thallus (important for gas exchange and, thus, physiological processes), or yield information on the symbiont composition within the lichen, e.g., the localisation and amount of additional cyanobacteria in cephalodia. Here, we present the possibilities and current limitations for applying conventional laboratory-based high-resolution X-ray computer tomography to analyse lichens. MicroCT allows the virtual 3D reconstruction of a sample from 2D X-ray projections and is helpful for the non-destructive analysis of structural characters or the symbiont composition of lichens. By means of a quantitative 3D image analysis, the volume of internal cephalodia is determined for Lobaria pulmonaria and the external cephalodia of Peltigera leucophlebia. Nevertheless, the need for higher-resolution tomography for more detailed studies is emphasised. Particular challenges are the large sizes of datasets to be analysed and the high variability of the lichen microstructures.
Collapse
|
5
|
Pykälä J, Kantelinen A, Myllys L. Taxonomy of Verrucaria species characterised by large spores, perithecia leaving pits in the rock and a pale thin thallus in Finland. MycoKeys 2020; 72:43-92. [PMID: 32963488 PMCID: PMC7481264 DOI: 10.3897/mycokeys.72.56223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/04/2020] [Indexed: 11/12/2022] Open
Abstract
Species of Verrucaria, characterised by large spores (at least some spores exceeding 25 µm in length), perithecia leaving pits in the rock and a pale thin thallus, form a taxonomically-difficult and poorly-known group. In this study, such species occurring in Finland are revised, based on ITS sequences and morphology. Maximum likelihood analysis of ITS sequence data was used to examine if the species belong to the Thelidium group, as suggested by BLAST search. Twelve species are accepted in Finland: Verrucaria bifurcata sp. nov., V. cavernarum sp. nov., V. devergens, V. difficilis sp. nov., V. foveolata, V. fuscozonata sp. nov., V. karelica, V. kuusamoensis sp. nov., V. subdevergens sp. nov., V. subjunctiva, V. subtilis and V. vacillans sp. nov. Verrucaria foveolata is nested in V. subjunctiva in the phylogeny, but due to morphological and ecogeographical differences, the two taxa are treated as separate species pending further studies. Based on the analysis, the study species belong to the Thelidium group. The studied species show a rather high infraspecific morphological, but a low genetic variation. Furthermore, they show considerable overlap in their morphology and many specimens cannot be reliably identified, based on morphology only. All species are restricted to calcareous rocks. Verrucaria alpigena, V. cinereorufa and V. hochstetteri are excluded from the lichen flora of Finland. Verrucaria grossa is considered a species with unresolved identity. Verrucaria foveolata and V. subtilis are rather common on calcareous rocks of Finland while V. devergens and V. kuusamoensis are restricted to northern Finland. Verrucaria subjunctiva occurs mainly in northern Finland. Verrucaria bifurcata has been found only from southern Finland. Verrucaria difficilis has few localities both in SW and NE Finland. Verrucaria vacillans is restricted to calcareous rocks (dolomite) on the mountains of the NW corner of Finland. Verrucaria fuscozonata, V. karelica and V. subdevergens occur only in the Oulanka area in NE Finland. A lectotype is designated for V. subjunctiva. The morphology of the Finnish species was compared with 51 European species of Verrucaria presumably belonging to the Thelidium group.
Collapse
Affiliation(s)
- Juha Pykälä
- Biodiversity Centre, Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland Finnish Environment Institute Helsinki Finland
| | - Annina Kantelinen
- Botanical Museum, Finnish Museum of Natural History, P.O. Box 7, FI-00014 University of Helsinki, Finland University of Helsinki Helsinki Finland
| | - Leena Myllys
- Botanical Museum, Finnish Museum of Natural History, P.O. Box 7, FI-00014 University of Helsinki, Finland University of Helsinki Helsinki Finland
| |
Collapse
|
6
|
Ruprecht U, Fernández-Mendoza F, Türk R, Fryday AM. High levels of endemism and local differentiation in the fungal and algal symbionts of saxicolous lecideoid lichens along a latitudinal gradient in southern South America. LICHENOLOGIST (LONDON, ENGLAND) 2020; 52:287-303. [PMID: 32788813 PMCID: PMC7396322 DOI: 10.1017/s0024282920000225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/20/2019] [Indexed: 06/11/2023]
Abstract
Saxicolous, lecideoid lichenized fungi have a cosmopolitan distribution but, being mostly cold adapted, are especially abundant in polar and high-mountain regions. To date, little is known of their origin or the extent of their trans-equatorial dispersal. Several mycobiont genera and species are thought to be restricted to either the Northern or the Southern Hemisphere, whereas others are thought to be widely distributed and occur in both hemispheres. However, these assumptions often rely on morphological analyses and lack supporting molecular genetic data. Also unknown is the extent of regional differentiation in the southern polar regions. An extensive set of lecideoid lichens (185 samples) was collected along a latitudinal gradient at the southern end of South America. Subantarctic climate conditions were maintained by increasing the elevation of the collecting sites with decreasing latitude. The investigated specimens were placed in a global context by including Antarctic and cosmopolitan sequences from other studies. For each symbiont three markers were used to identify intraspecific variation (mycobiont: ITS, mtSSU, RPB1; photobiont: ITS, psbJ-L, COX2). For the mycobiont, the saxicolous genera Lecidea, Porpidia, Poeltidea and Lecidella were phylogenetically re-evaluated, along with their photobionts Asterochloris and Trebouxia. For several globally distributed species groups, the results show geographically highly differentiated subclades, classified as operational taxonomical units (OTUs), which were assigned to the different regions of southern South America (sSA). Furthermore, several small endemic and well-supported clades apparently restricted to sSA were detected at the species level for both symbionts.
Collapse
Affiliation(s)
- Ulrike Ruprecht
- Universität Salzburg, FB Biowissenschaften, Hellbrunnerstrasse 34, 5020Salzburg, Austria
| | | | - Roman Türk
- Universität Salzburg, FB Biowissenschaften, Hellbrunnerstrasse 34, 5020Salzburg, Austria
| | - Alan M. Fryday
- Department of Plant Biology, Michigan State University, East Lansing, MI48824, USA
| |
Collapse
|
7
|
Autumn K, Barcenas-Peña A, Kish-Levine S, Huang JP, Lumbsch HT. Repeated Colonization Between Arid and Seasonal Wet Habitats, Frequent Transition Among Substrate Preferences, and Chemical Diversity in Western Australian Xanthoparmelia Lichens. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Ravera S, Puglisi M, Vizzini A, Totti C, Arosio G, Benesperi R, Bianchi E, Boccardo F, Briozzo I, Dagnino D, De Giuseppe AB, Dovana F, Di Nuzzo L, Fascetti S, Gheza G, Giordani P, Malíček J, Mariotti MG, Mayrhofer H, Minuto L, Nascimbene J, Nimis PL, Martellos S, Passalacqua NG, Pittao E, Potenza G, Puntillo D, Rosati L, Sicoli G, Spitale D, Tomaselli V, Trabucco R, Turcato C, Vallese C, Zardini M. Notulae to the Italian flora of algae, bryophytes, fungi and lichens: 8. ITALIAN BOTANIST 2019. [DOI: 10.3897/italianbotanist.8.48263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this contribution, new data concerning algae, bryophytes, fungi, and lichens of the Italian flora are presented. It includes new records and confirmations for the algae genus Chara, the bryophyte genera Homalia, Mannia, and Tortella, the fungal genera Cortinarius, Russula, and Stereum, and the lichen genera Cetrelia, Cladonia, Enterographa, Graphis, Lecanora, Lepraria, Multiclavula, Mycomicrothelia, Parmelia, Peltigera, Pleopsidium, Psora, Scytinium, Umbilicaria, and Rhizocarpon.
Collapse
|
9
|
Zakeri Z, Otte V, Sipman H, Malíček J, Cubas P, Rico VJ, Lenzová V, Svoboda D, Divakar PK. Discovering cryptic species in the Aspiciliella intermutans complex (Megasporaceae, Ascomycota) - First results using gene concatenation and coalescent-based species tree approaches. PLoS One 2019; 14:e0216675. [PMID: 31136587 PMCID: PMC6538240 DOI: 10.1371/journal.pone.0216675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/26/2019] [Indexed: 11/20/2022] Open
Abstract
Taxonomic identifications in some groups of lichen-forming fungi have been challenge largely due to the scarcity of taxonomically relevant features and limitations of morphological and chemical characters traditionally used to distinguish closely related taxa. Delineating species boundaries in closely related species or species complexes often requires a range of multisource data sets and comprehensive analytical methods. Here we aim to examine species boundaries in a group of saxicolous lichen forming fungi, the Aspiciliella intermutans complex (Megasporaceae), widespread mainly in the Mediterranean. We gathered DNA sequences of the nuclear ribosomal internal transcribed spacer (nuITS), the nuclear large subunit (nuLSU), the mitochondrial small subunit (mtSSU) ribosomal DNA, and the DNA replication licensing factor MCM7 from 80 samples mostly from Iran, Caucasia, Greece and eastern Europe. We used a combination of phylogenetic strategies and a variety of empirical, sequence-based species delimitation approaches to infer species boundaries in this group. The latter included: the automatic barcode gap discovery (ABGD), the multispecies coalescent approach *BEAST and Bayesian Phylogenetics and Phylogeography (BPP) program. Different species delimitation scenarios were compared using Bayes factors species delimitation analysis. Furthermore, morphological, chemical, ecological and geographical features of the sampled specimens were examined. Our study uncovered cryptic species diversity in A. intermutans and showed that morphology-based taxonomy may be unreliable, underestimating species diversity in this group of lichens. We identified a total of six species-level lineages in the A. intermutans complex using inferences from multiple empirical operational criteria. We found little corroboration between morphological and ecological features with our proposed candidate species, while secondary metabolite data do not corroborate tree topology. The present study on the A. intermutans species-complex indicates that the genus Aspiciliella, as currently circumscribed, is more diverse in Eurasia than previously expected.
Collapse
Affiliation(s)
- Zakieh Zakeri
- Senckenberg Museum of Natural History, Görlitz, Germany
- * E-mail:
| | - Volker Otte
- Senckenberg Museum of Natural History, Görlitz, Germany
| | - Harrie Sipman
- Botanischer Garten & Botanisches Museum Berlin-Dahlem, Berlin, Germany
| | - Jiří Malíček
- The Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - Paloma Cubas
- Departamento de Farmacología, Farmacognosia y Botánica (U.D. Botánica), Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Víctor J. Rico
- Departamento de Farmacología, Farmacognosia y Botánica (U.D. Botánica), Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Veronika Lenzová
- Charles University in Prague, Faculty of Sciences, Department of Botany, Prague, Czech Republic
| | - David Svoboda
- Charles University in Prague, Faculty of Sciences, Department of Botany, Prague, Czech Republic
| | - Pradeep K. Divakar
- Departamento de Farmacología, Farmacognosia y Botánica (U.D. Botánica), Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| |
Collapse
|
10
|
|
11
|
Mark K, Saag L, Leavitt SD, Will-Wolf S, Nelsen MP, Tõrra T, Saag A, Randlane T, Lumbsch HT. Evaluation of traditionally circumscribed species in the lichen-forming genus Usnea, section Usnea (Parmeliaceae, Ascomycota) using a six-locus dataset. ORG DIVERS EVOL 2016. [DOI: 10.1007/s13127-016-0273-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|