1
|
Benedict C, Delgado A, Pen I, Vaga C, Daly M, Quattrini AM. Sea anemone (Anthozoa, Actiniaria) diversity in Mo'orea (French Polynesia). Mol Phylogenet Evol 2024; 198:108118. [PMID: 38849066 DOI: 10.1016/j.ympev.2024.108118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Sea anemones (Order Actiniaria) are a diverse group of marine invertebrates ubiquitous across marine ecosystems. Despite their wide distribution and success, a knowledge gap persists in our understanding of their diversity within tropical systems, owed to sampling bias of larger and more charismatic species overshadowing cryptic lineages. This study aims to delineate the sea anemone diversity in Mo'orea (French Polynesia) with the use of a dataset from the Mo'orea Biocode's "BioBlitz" initiative, which prioritized the sampling of more cryptic and understudied taxa. Implementing a target enrichment approach, we integrate 71 newly sequenced samples into an expansive phylogenetic framework and contextualize Mo'orea's diversity within global distribution patterns of sea anemones. Our analysis corroborates the presence of several previously documented sea anemones in French Polynesia and identifies for the first time the occurrence of members of genera Andvakia and Aiptasiomorpha. This research unveils the diverse sea anemone ecosystem in Mo'orea, spotlighting the area's ecological significance and emphasizing the need for continued exploration. Our methodology, encompassing a broad BLAST search coupled with phylogenetic analysis, proved to be a practical and effective approach for overcoming the limitations posed by the lack of comprehensive sequence data for sea anemones. We discuss the merits and limitations of current molecular methodologies and stress the importance of further research into lesser-studied marine organisms like sea anemones. Our work sets a precedent for future phylogenetic studies stemming from BioBlitz endeavors.
Collapse
Affiliation(s)
- Charlotte Benedict
- The Ohio State University, Department of Evolution, Ecology, and Organismal Biology, 1315 Kinnear Rd, Columbus, OH 43212, USA.
| | - Alonso Delgado
- The Ohio State University, Department of Evolution, Ecology, and Organismal Biology, 1315 Kinnear Rd, Columbus, OH 43212, USA
| | - Isabel Pen
- The Ohio State University, Department of Evolution, Ecology, and Organismal Biology, 1315 Kinnear Rd, Columbus, OH 43212, USA
| | - Claudia Vaga
- Department of Invertebrate Zoology, Smithsonian Institution's National Museum of Natural History, 10th and Constitution Ave NW, Washington, DC 20560, USA
| | - Marymegan Daly
- The Ohio State University, Department of Evolution, Ecology, and Organismal Biology, 1315 Kinnear Rd, Columbus, OH 43212, USA
| | - Andrea M Quattrini
- Department of Invertebrate Zoology, Smithsonian Institution's National Museum of Natural History, 10th and Constitution Ave NW, Washington, DC 20560, USA
| |
Collapse
|
2
|
Clarke DN, Rose NH, De Meulenaere E, Rosental B, Pearse JS, Pearse VB, Deheyn DD. Fluorescent proteins generate a genetic color polymorphism and counteract oxidative stress in intertidal sea anemones. Proc Natl Acad Sci U S A 2024; 121:e2317017121. [PMID: 38457522 PMCID: PMC10945830 DOI: 10.1073/pnas.2317017121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/13/2024] [Indexed: 03/10/2024] Open
Abstract
Fluorescent proteins (FPs) are ubiquitous tools in research, yet their endogenous functions in nature are poorly understood. In this work, we describe a combination of functions for FPs in a clade of intertidal sea anemones whose FPs control a genetic color polymorphism together with the ability to combat oxidative stress. Focusing on the underlying genetics of a fluorescent green "Neon" color morph, we show that allelic differences in a single FP gene generate its strong and vibrant color, by increasing both molecular brightness and FP gene expression level. Natural variation in FP sequences also produces differences in antioxidant capacity. We demonstrate that these FPs are strong antioxidants that can protect live cells against oxidative stress. Finally, based on structural modeling of the responsible amino acids, we propose a model for FP antioxidant function that is driven by molecular surface charge. Together, our findings shed light on the multifaceted functions that can co-occur within a single FP and provide a framework for studying the evolution of fluorescence as it balances spectral and physiological functions in nature.
Collapse
Affiliation(s)
- D. Nathaniel Clarke
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA93950
| | - Noah H. Rose
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA93950
| | - Evelien De Meulenaere
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA92037
| | - Benyamin Rosental
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Regenerative Medicine and Stem Cells, Ben-Gurion University of the Negev, Beer-Sheva84105, Israel
| | - John S. Pearse
- Department of Ecology and Evolutionary Biology, Joseph M. Long Marine Laboratory, University of California, Santa Cruz, CA95060
| | - Vicki Buchsbaum Pearse
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA93950
- Department of Ecology and Evolutionary Biology, Joseph M. Long Marine Laboratory, University of California, Santa Cruz, CA95060
| | - Dimitri D. Deheyn
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA92037
| |
Collapse
|
3
|
Varsha V, Radhika S, Anilkumar G. An Overview of Julia-lythgoe Olefination. Curr Org Synth 2024; 21:97-126. [PMID: 37218208 DOI: 10.2174/1570179420666230510104114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 05/24/2023]
Abstract
Julia-Lythgoe olefination (or simply Julia olefination) is an olefination process between phenyl sulfones and aldehydes (or ketones) to give alkenes after alcohol functionalization and reductive elimination using sodium amalgam or SmI2. It is mainly used to synthesize E-alkenes and is a key step in numerous total syntheses of many natural products. This review exclusively deals with the Julia-Lythgoe olefination and concentrates mainly on the applications of this reaction in natural product synthesis covering literature up to 2021.
Collapse
Affiliation(s)
- Vijayan Varsha
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O, Kottayam, Kerala, 686560, India
| | - Sankaran Radhika
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O, Kottayam, Kerala, 686560, India
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O, Kottayam, Kerala, 686560, India
| |
Collapse
|
4
|
da Silva DL, Valladão R, Beraldo-Neto E, Coelho GR, Neto OBDS, Vigerelli H, Lopes AR, Hamilton BR, Undheim EAB, Sciani JM, Pimenta DC. Spatial Distribution and Biochemical Characterization of Serine Peptidase Inhibitors in the Venom of the Brazilian Sea Anemone Anthopleura cascaia Using Mass Spectrometry Imaging. Mar Drugs 2023; 21:481. [PMID: 37755094 PMCID: PMC10532579 DOI: 10.3390/md21090481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/28/2023] Open
Abstract
Sea anemones are known to produce a diverse array of toxins with different cysteine-rich peptide scaffolds in their venoms. The serine peptidase inhibitors, specifically Kunitz inhibitors, are an important toxin family that is believed to function as defensive peptides, as well as prevent proteolysis of other secreted anemone toxins. In this study, we isolated three serine peptidase inhibitors named Anthopleura cascaia peptide inhibitors I, II, and III (ACPI-I, ACPI-II, and ACPI-III) from the venom of the endemic Brazilian sea anemone A. cascaia. The venom was fractionated using RP-HPLC, and the inhibitory activity of these fractions against trypsin was determined and found to range from 59% to 93%. The spatial distribution of the anemone peptides throughout A. cascaia was observed using mass spectrometry imaging. The inhibitory peptides were found to be present in the tentacles, pedal disc, and mesenterial filaments. We suggest that the three inhibitors observed during this study belong to the venom Kunitz toxin family on the basis of their similarity to PI-actitoxin-aeq3a-like and the identification of amino acid residues that correspond to a serine peptidase binding site. Our findings expand our understanding of the diversity of toxins present in sea anemone venom and shed light on their potential role in protecting other venom components from proteolysis.
Collapse
Affiliation(s)
- Daiane Laise da Silva
- Programa de Pós-Graduação em Ciências-Toxinologia, Instituto Butantan, Av. Vital Brasil 1500, Butantã, São Paulo 05503-900, Brazil; (E.B.-N.); (G.R.C.); (H.V.); (A.R.L.)
- Laboratório de Bioquímica, Instituto Butantan, Av. Vital Brasil 1500, São Paulo 05503-900, Brazil; (R.V.); (O.B.d.S.N.)
- Centre for Advanced Imaging, University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Rodrigo Valladão
- Laboratório de Bioquímica, Instituto Butantan, Av. Vital Brasil 1500, São Paulo 05503-900, Brazil; (R.V.); (O.B.d.S.N.)
| | - Emidio Beraldo-Neto
- Programa de Pós-Graduação em Ciências-Toxinologia, Instituto Butantan, Av. Vital Brasil 1500, Butantã, São Paulo 05503-900, Brazil; (E.B.-N.); (G.R.C.); (H.V.); (A.R.L.)
- Laboratório de Bioquímica, Instituto Butantan, Av. Vital Brasil 1500, São Paulo 05503-900, Brazil; (R.V.); (O.B.d.S.N.)
| | - Guilherme Rabelo Coelho
- Programa de Pós-Graduação em Ciências-Toxinologia, Instituto Butantan, Av. Vital Brasil 1500, Butantã, São Paulo 05503-900, Brazil; (E.B.-N.); (G.R.C.); (H.V.); (A.R.L.)
- Laboratório de Bioquímica, Instituto Butantan, Av. Vital Brasil 1500, São Paulo 05503-900, Brazil; (R.V.); (O.B.d.S.N.)
| | - Oscar Bento da Silva Neto
- Laboratório de Bioquímica, Instituto Butantan, Av. Vital Brasil 1500, São Paulo 05503-900, Brazil; (R.V.); (O.B.d.S.N.)
| | - Hugo Vigerelli
- Programa de Pós-Graduação em Ciências-Toxinologia, Instituto Butantan, Av. Vital Brasil 1500, Butantã, São Paulo 05503-900, Brazil; (E.B.-N.); (G.R.C.); (H.V.); (A.R.L.)
- Laboratório de Genética, Instituto Butantan, Av. Vital Brasil 1500, São Paulo 05503-900, Brazil
| | - Adriana Rios Lopes
- Programa de Pós-Graduação em Ciências-Toxinologia, Instituto Butantan, Av. Vital Brasil 1500, Butantã, São Paulo 05503-900, Brazil; (E.B.-N.); (G.R.C.); (H.V.); (A.R.L.)
- Laboratório de Bioquímica, Instituto Butantan, Av. Vital Brasil 1500, São Paulo 05503-900, Brazil; (R.V.); (O.B.d.S.N.)
| | - Brett R. Hamilton
- Centre for Microscopy and Microanalysis, University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Eivind A. B. Undheim
- Centre for Advanced Imaging, University of Queensland, St. Lucia, QLD 4072, Australia;
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Juliana Mozer Sciani
- Laboratório de Farmacologia Molecular e Compostos Bioativos, Universidade São Francisco, Av. São Francisco de Assis, 218, São Paulo 12916-900, Brazil;
| | - Daniel Carvalho Pimenta
- Programa de Pós-Graduação em Ciências-Toxinologia, Instituto Butantan, Av. Vital Brasil 1500, Butantã, São Paulo 05503-900, Brazil; (E.B.-N.); (G.R.C.); (H.V.); (A.R.L.)
- Laboratório de Bioquímica, Instituto Butantan, Av. Vital Brasil 1500, São Paulo 05503-900, Brazil; (R.V.); (O.B.d.S.N.)
| |
Collapse
|
5
|
DA Silva Junior JGA, Brandão RA, Gomes PB. First record of a sea anemone of genus Bunodosoma with two oral discs: a clue to asexual reproduction? AN ACAD BRAS CIENC 2022; 94:e20201003. [PMID: 35766593 DOI: 10.1590/0001-3765202220201003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/12/2020] [Indexed: 11/22/2022] Open
Abstract
Different reproductive strategies (both sexual and asexual) that may occur in individuals of the same species may explain the success of sea anemones (Cnidaria:Actiniaria) in colonizing different ecosystems around the planet. Here we provide the first record of a Bunodosoma specimen with two oral discs and discuss the possibility of asexual reproduction in this genus. One individual of Bunodosoma cangicum was found in Carneiros beach (Pernambuco state, Brazil) with two fully individualized oral discs but with column and pedal disc still connected. Our finding may represent a clue to longitudinal fission in Bunodosoma. Yet, despite the number of different studies carried out so far, the absence of data regarding asexual reproduction in Bunodosoma suggests that it might be rare in this genus, occurring only in sporadic cases such as recovery from injury.
Collapse
Affiliation(s)
- José Guilherme A DA Silva Junior
- Universidade Federal de Pernambuco, Programa de Pós graduação em Biologia Animal, Centro de Biociências, Av. Professor Moraes Rego, Cidade Universitária 50670-420 Recife, PE, Brazil.,Universidade Federal Rural de Pernambuco, Grupo de Pesquisa em Antozoários, Departamento de Biologia, Rua Dom Manuel de Medeiros, s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Rafael Antônio Brandão
- Universidade Federal de Pernambuco, Programa de Pós graduação em Biologia Animal, Centro de Biociências, Av. Professor Moraes Rego, Cidade Universitária 50670-420 Recife, PE, Brazil.,Universidade Federal Rural de Pernambuco, Grupo de Pesquisa em Antozoários, Departamento de Biologia, Rua Dom Manuel de Medeiros, s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Paula Braga Gomes
- Universidade Federal de Pernambuco, Programa de Pós graduação em Biologia Animal, Centro de Biociências, Av. Professor Moraes Rego, Cidade Universitária 50670-420 Recife, PE, Brazil.,Universidade Federal Rural de Pernambuco, Grupo de Pesquisa em Antozoários, Departamento de Biologia, Rua Dom Manuel de Medeiros, s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| |
Collapse
|
6
|
Titus BM, Daly M. Population genomics for symbiotic anthozoans: can reduced representation approaches be used for taxa without reference genomes? Heredity (Edinb) 2022; 128:338-351. [PMID: 35418670 PMCID: PMC9076904 DOI: 10.1038/s41437-022-00531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/08/2022] Open
Abstract
Population genetic studies of symbiotic anthozoans have been historically challenging because their endosymbioses with dinoflagellates have impeded marker development. Genomic approaches like reduced representation sequencing alleviate marker development issues but produce anonymous loci, and without a reference genome, it is unknown which organism is contributing to the observed patterns. Alternative methods such as bait-capture sequencing targeting Ultra-Conserved Elements are now possible but costly. Thus, RADseq remains attractive, but how useful are these methods for symbiotic anthozoan taxa without a reference genome to separate anthozoan from algal sequences? We explore this through a case-study using a double-digest RADseq dataset for the sea anemone Bartholomea annulata. We assembled a holobiont dataset (3854 loci) for 101 individuals, then used a reference genome to create an aposymbiotic dataset (1402 loci). For both datasets, we investigated population structure and used coalescent simulations to estimate demography and population parameters. We demonstrate complete overlap in the spatial patterns of genetic diversity, demographic histories, and population parameter estimates for holobiont and aposymbiotic datasets. We hypothesize that the unique combination of anthozoan biology, diversity of the endosymbionts, and the manner in which assembly programs identify orthologous loci alleviates the need for reference genomes in some circumstances. We explore this hypothesis by assembling an additional 21 datasets using the assembly programs pyRAD and Stacks. We conclude that RADseq methods are more tractable for symbiotic anthozoans without reference genomes than previously realized.
Collapse
Affiliation(s)
- Benjamin M Titus
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA.
- Dauphin Island Sea Lab, Dauphin Island, AL, USA.
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA.
| | - Marymegan Daly
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
7
|
Comparison of sequence-capture and ddRAD approaches in resolving species and populations in hexacorallian anthozoans. Mol Phylogenet Evol 2021; 163:107233. [PMID: 34139346 DOI: 10.1016/j.ympev.2021.107233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
Genome-level sequencing is the next step in understanding species-level relationships within Anthozoa (soft corals, anemones, stony corals, and their kin) as morphological and PCR-directed (single-locus) sequencing methods often fall short of differentiating species. The sea anemone genus Metridium is a common northern temperate sea anemone whose species are difficult to differentiate using morphology alone. Here we use Metridium as a case study to confirm the low level of information available in six loci for species differentiation commonly sequenced for Actiniaria and explore and compare the efficacy of ddRAD and sequence-capture methods in species-level systematics and biogeographic studies. We produce phylogenetic trees from concatenated datasets and perform DAPC and STRUCTURE analyses using SNP data. The six conventional loci are not able to consistently differentiate species within Metridium. The sequence-capture dataset resulted in high support and resolution for both current species and relationships between geographic areas. The ddRAD datasets displayed ambiguity among species, and support between major geographic groupings was not as high as the sequence-capture datasets. The level of resolution and support resulting from the sequence-capture data, combined with the ability to add additional individuals and expand beyond the genus Metridium over time, emphasizes the utility of sequence-capture methods for both systematics and future biogeographic studies within anthozoans. We discuss the strengths and weaknesses of the genomic approaches in light of our findings and suggest potential implications for the biogeography of Metridium based on our sampling.
Collapse
|
8
|
Kaliszewicz A, Panteleeva N, Żmuda-Baranowska M, Szawaryn K, Olejniczak I, Boniecki P, Grebelnyi SD, Kabzińska D, Romanowski J, Maciaszek R, Górska EB, Zawadzka-Sieradzka J. Phylogenetic Relatedness within the Internally Brooding Sea Anemones from the Arctic-Boreal Region. BIOLOGY 2021; 10:81. [PMID: 33499232 PMCID: PMC7911183 DOI: 10.3390/biology10020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/25/2022]
Abstract
Phylogenetic analyses based on mitochondrial 16S rDNA, nuclear 28S rDNA, and morphological and ecological traits of Aulactinia, Urticina and Cribrinopsis sea anemones inhabiting the Arctic-boreal region indicate discordances between trees derived from molecular sequences and those based on morphological traits. Nuclear genes were more informative than mitochondrial and morphological datasets. Our findings indicate that 16S rDNA has limited applicability for phylogenetic analyses at lower taxonomic levels and can only be used for distinction of families. Although 28S rDNA allowed for the classification of distinct genera, it could not confirm that species of Urticina and Cribrinopsis, which appeared to be closely related, were correctly separated into two different genera. The nuclear tree revealed inconsistencies between specimens belonging to European Urticina crassicornis and Pacific U. crassicornis; the latter seems to be a different species. In contrast to Pacific U. crassicornis, the specimens collected from different localities in the Barents Sea are on the same tree branch. The same was observed for specimens of Aulactinia stella. Both species brood their young internally. The dispersal of sea anemones with brooding juveniles seems to be less limited than expected and might be sufficient to settle habitats more than a thousand kilometers away.
Collapse
Affiliation(s)
- Anita Kaliszewicz
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland; (I.O.); (P.B.); (J.R.); (J.Z.-S.)
| | - Ninel Panteleeva
- Murmansk Marine Biological Institute, Russian Academy of Sciences, 183010 Murmansk, Russia;
| | | | - Karol Szawaryn
- Museum and Institute of Zoology, Polish Academy of Sciences, 00-679 Warsaw, Poland;
| | - Izabella Olejniczak
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland; (I.O.); (P.B.); (J.R.); (J.Z.-S.)
| | - Paweł Boniecki
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland; (I.O.); (P.B.); (J.R.); (J.Z.-S.)
| | - Sergey D. Grebelnyi
- Zoological Institute, Russian Academy of Sciences, 199034 Saint Petersburg, Russia;
| | - Dagmara Kabzińska
- Neuromuscular Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Jerzy Romanowski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland; (I.O.); (P.B.); (J.R.); (J.Z.-S.)
| | - Rafał Maciaszek
- Department of Animal Genetics and Conservation, Institute of Animal Sciences, Warsaw University of Life Sciences, ul. Ciszewskiego 8, 02-786 Warsaw, Poland;
| | - Ewa B. Górska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences SGGW, 02-787 Warsaw, Poland;
| | - Joanna Zawadzka-Sieradzka
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland; (I.O.); (P.B.); (J.R.); (J.Z.-S.)
| |
Collapse
|
9
|
Gusmão LC, Van Deusen V, Daly M, Rodríguez E. Origin and evolution of the symbiosis between sea anemones (Cnidaria, Anthozoa, Actiniaria) and hermit crabs, with additional notes on anemone-gastropod associations. Mol Phylogenet Evol 2020; 148:106805. [PMID: 32217169 DOI: 10.1016/j.ympev.2020.106805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/10/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022]
Abstract
The anemone-crab mutualism is ubiquitous in temperate and tropical marine environments. In this symbiosis, one or more anemones live on a shell inhabited by a hermit crab and reciprocal phoretic, trophic, and defensive benefits are exchanged between the partners. Sea anemone-hermit crab symbionts belong to three families: Hormathiidae (Calliactis and Paracalliactis), Sagartiidae (Carcinactis and Verrillactis), and Actiniidae (Stylobates). Hermit crabs establish most partnerships by detaching anemones and placing them on their shell; sea anemones can also mount shells unaided, triggered by a mollusc-derived substance in the periostracum of the shell. At least partial cooperation by the anemones is necessary for successful establishment of the symbiosis. Here, we expand the evolutionary framework for hormathiid symbionts by generating a phylogeny with at least one member of each actiniarian symbiotic genus with hermit crabs using five molecular markers (16S, 12S, 18S, 28S, CO3). We not only corroborated the results from a previous study by finding two origins of hermit crab symbiosis within Hormathiidae, but also found additional origins for hermit crab symbiosis within Actiniaria. We provide for the first time evidence of a close relationship between symbionts Carcinactis dolosa and V. paguri. The ability to secrete chitin by the ectoderm of the column is inferred to be broadly convergent within Actiniaria whereas the secretion of a chitinous carcinoecium by the pedal disc is a distinct but convergent morphological adaptation of several lineages within Actiniaria. Our finding of multiple origins for both the hermit crab and gastropod symbioses suggests that the shell-mounting behavior might only have been the precursor of the hermit crab association among Calliactis spp.
Collapse
Affiliation(s)
- Luciana C Gusmão
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA.
| | - Vanessa Van Deusen
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA; Biology Department, San Diego State University, San Diego, CA 92182, USA
| | - Marymegan Daly
- Department of Evolution, Ecology and Organismal Biology, Ohio State University, Museum of Biological Diversity, 1315 Kinnear Road, Columbus, OH 43212, USA.
| | - Estefanía Rodríguez
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA.
| |
Collapse
|
10
|
Gusmão LC, Qu C, Burke SL, Rodríguez E. Two New Deep-Sea Species of Burrowing Anemones (Cnidaria: Actiniaria: Edwardsiidae) from Whittard Canyon Off the Southwestern Coast of Ireland. AMERICAN MUSEUM NOVITATES 2020. [DOI: 10.1206/3945.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Luciana C. Gusmão
- Division of Invertebrate Zoology, American Museum of Natural History, New York
| | - Cherie Qu
- Science Research Mentoring Program, American Museum of Natural History, New York
| | - Sadie L. Burke
- Science Research Mentoring Program, American Museum of Natural History, New York
| | - Estefanía Rodríguez
- Division of Invertebrate Zoology, American Museum of Natural History, New York
| |
Collapse
|
11
|
Titus BM, Benedict C, Laroche R, Gusmão LC, Van Deusen V, Chiodo T, Meyer CP, Berumen ML, Bartholomew A, Yanagi K, Reimer JD, Fujii T, Daly M, Rodríguez E. Phylogenetic relationships among the clownfish-hosting sea anemones. Mol Phylogenet Evol 2019; 139:106526. [DOI: 10.1016/j.ympev.2019.106526] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 01/06/2023]
|
12
|
Surm JM, Stewart ZK, Papanicolaou A, Pavasovic A, Prentis PJ. The draft genome of Actinia tenebrosa reveals insights into toxin evolution. Ecol Evol 2019; 9:11314-11328. [PMID: 31641475 PMCID: PMC6802032 DOI: 10.1002/ece3.5633] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022] Open
Abstract
Sea anemones have a wide array of toxic compounds (peptide toxins found in their venom) which have potential uses as therapeutics. To date, the majority of studies characterizing toxins in sea anemones have been restricted to species from the superfamily, Actinioidea. No highly complete draft genomes are currently available for this superfamily, however, highlighting our limited understanding of the genes encoding toxins in this important group. Here we have sequenced, assembled, and annotated a draft genome for Actinia tenebrosa. The genome is estimated to be approximately 255 megabases, with 31,556 protein-coding genes. Quality metrics revealed that this draft genome matches the quality and completeness of other model cnidarian genomes, including Nematostella, Hydra, and Acropora. Phylogenomic analyses revealed strong conservation of the Cnidaria and Hexacorallia core-gene set. However, we found that lineage-specific gene families have undergone significant expansion events compared with shared gene families. Enrichment analysis performed for both gene ontologies, and protein domains revealed that genes encoding toxins contribute to a significant proportion of the lineage-specific genes and gene families. The results make clear that the draft genome of A. tenebrosa will provide insight into the evolution of toxins and lineage-specific genes, and provide an important resource for the discovery of novel biological compounds.
Collapse
Affiliation(s)
- Joachim M. Surm
- Faculty of HealthSchool of Biomedical SciencesQueensland University of TechnologyKelvin GroveQldAustralia
- Institute of Health and Biomedical InnovationQueensland University of TechnologyKelvin GroveQldAustralia
| | - Zachary K. Stewart
- Science and Engineering FacultySchool of Earth, Environmental and Biological SciencesQueensland University of TechnologyBrisbaneQldAustralia
- Institute for Future EnvironmentsQueensland University of TechnologyBrisbaneQldAustralia
| | | | - Ana Pavasovic
- Faculty of HealthSchool of Biomedical SciencesQueensland University of TechnologyKelvin GroveQldAustralia
| | - Peter J. Prentis
- Science and Engineering FacultySchool of Earth, Environmental and Biological SciencesQueensland University of TechnologyBrisbaneQldAustralia
- Institute for Future EnvironmentsQueensland University of TechnologyBrisbaneQldAustralia
| |
Collapse
|
13
|
Gusmão LC, Rodríguez E, Daly M. Description of Calliactis tigris sp. nov.: reconciling taxonomy and phylogeny in hermit-crab symbiotic anemones (Cnidaria: Actiniaria: Hormathiidae). ORG DIVERS EVOL 2019. [DOI: 10.1007/s13127-019-00414-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Halcampulactidae (Actiniaria, Actinostoloidea), a new family of burrowing sea anemones with external brooding from Antarctica. Polar Biol 2019. [DOI: 10.1007/s00300-019-02516-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Hierarchical biogeographical processes largely explain the genomic divergence pattern in a species complex of sea anemones (Metridioidea: Sagartiidae: Anthothoe). Mol Phylogenet Evol 2018; 127:217-228. [DOI: 10.1016/j.ympev.2018.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 11/20/2022]
|
16
|
Quattrini AM, Faircloth BC, Dueñas LF, Bridge TCL, Brugler MR, Calixto‐Botía IF, DeLeo DM, Forêt S, Herrera S, Lee SMY, Miller DJ, Prada C, Rádis‐Baptista G, Ramírez‐Portilla C, Sánchez JA, Rodríguez E, McFadden CS. Universal target‐enrichment baits for anthozoan (Cnidaria) phylogenomics: New approaches to long‐standing problems. Mol Ecol Resour 2017; 18:281-295. [DOI: 10.1111/1755-0998.12736] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/28/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022]
Affiliation(s)
| | - Brant C. Faircloth
- Department of Biological Sciences and Museum of Natural Science Louisiana State University Baton Rouge LA USA
| | - Luisa F. Dueñas
- Departamento de Ciencias Biológicas‐Facultad de Ciencias Laboratorio de Biología Molecular Marina (BIOMMAR) Universidad de los Andes Bogotá Colombia
| | - Tom C. L. Bridge
- Queensland Museum Network Townsville QLD Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies James Cook University Townsville QLD Australia
| | - Mercer R. Brugler
- Division of Invertebrate Zoology American Museum of Natural History New York NY USA
- Biological Sciences Department NYC College of Technology City University of New York Brooklyn NY USA
| | - Iván F. Calixto‐Botía
- Departamento de Ciencias Biológicas‐Facultad de Ciencias Laboratorio de Biología Molecular Marina (BIOMMAR) Universidad de los Andes Bogotá Colombia
- Department of Animal Ecology and Systematics Justus Liebig Universität Giessen Germany
| | - Danielle M. DeLeo
- Department of Biological Sciences Florida International University North Miami FL USA
- Biology Department Temple University Philadelphia PA USA
| | - Sylvain Forêt
- Research School of Biology Australian National University Canberra ACT Australia
| | - Santiago Herrera
- Department of Biological Sciences Lehigh University Bethlehem PA USA
| | - Simon M. Y. Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences University of Macau Macao China
| | - David J. Miller
- Australian Research Council Centre of Excellence for Coral Reef Studies James Cook University Townsville QLD Australia
| | - Carlos Prada
- Department of Biological Sciences University of Rhode Island Kingston RI USA
| | | | - Catalina Ramírez‐Portilla
- Departamento de Ciencias Biológicas‐Facultad de Ciencias Laboratorio de Biología Molecular Marina (BIOMMAR) Universidad de los Andes Bogotá Colombia
- Department of Animal Ecology and Systematics Justus Liebig Universität Giessen Germany
| | - Juan A. Sánchez
- Departamento de Ciencias Biológicas‐Facultad de Ciencias Laboratorio de Biología Molecular Marina (BIOMMAR) Universidad de los Andes Bogotá Colombia
| | - Estefanía Rodríguez
- Division of Invertebrate Zoology American Museum of Natural History New York NY USA
| | | |
Collapse
|
17
|
Mallien C, Porro B, Zamoum T, Olivier C, Wiedenmann J, Furla P, Forcioli D. Conspicuous morphological differentiation without speciation in Anemonia viridis (Cnidaria, Actiniaria). SYST BIODIVERS 2017. [DOI: 10.1080/14772000.2017.1383948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Cédric Mallien
- Sorbonne Universités, UPMC Univ Paris 06, Univ Antilles, Univ Nice Sophia Antipolis, CNRS, Evolution Paris Seine – Institut de Biologie Paris Seine (EPS - IBPS), 75005 Paris, France
| | - Barbara Porro
- Sorbonne Universités, UPMC Univ Paris 06, Univ Antilles, Univ Nice Sophia Antipolis, CNRS, Evolution Paris Seine – Institut de Biologie Paris Seine (EPS - IBPS), 75005 Paris, France
| | - Thamilla Zamoum
- Sorbonne Universités, UPMC Univ Paris 06, Univ Antilles, Univ Nice Sophia Antipolis, CNRS, Evolution Paris Seine – Institut de Biologie Paris Seine (EPS - IBPS), 75005 Paris, France
| | - Caroline Olivier
- Sorbonne Universités, UPMC Univ Paris 06, Univ Antilles, Univ Nice Sophia Antipolis, CNRS, Evolution Paris Seine – Institut de Biologie Paris Seine (EPS - IBPS), 75005 Paris, France
| | - Jörg Wiedenmann
- Coral Reef Laboratory, Ocean and Earth Science, University of Southampton, Southampton SO14 3ZH, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Paola Furla
- Sorbonne Universités, UPMC Univ Paris 06, Univ Antilles, Univ Nice Sophia Antipolis, CNRS, Evolution Paris Seine – Institut de Biologie Paris Seine (EPS - IBPS), 75005 Paris, France
| | - Didier Forcioli
- Sorbonne Universités, UPMC Univ Paris 06, Univ Antilles, Univ Nice Sophia Antipolis, CNRS, Evolution Paris Seine – Institut de Biologie Paris Seine (EPS - IBPS), 75005 Paris, France
| |
Collapse
|