1
|
Zhao C, Rollo B, Shahid Javaid M, Huang Z, He W, Xu H, Kwan P, Zhang C. An integrated in vitro human iPSCs-derived neuron and in vivo animal approach for preclinical screening of anti-seizure compounds. J Adv Res 2024; 64:249-262. [PMID: 37995945 PMCID: PMC11464642 DOI: 10.1016/j.jare.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023] Open
Abstract
INTRODUCTION One-third of people with epilepsy continue to experience seizures despite treatment with existing anti-seizure medications (ASMs). The failure of modern ASMs to substantially improve epilepsy prognosis has been partly attributed to overreliance on acute rodent models in preclinical drug development as they do not adequately recapitulate the mechanisms of human epilepsy, are labor-intensive and unsuitable for high-throughput screening (HTS). There is an urgent need to find human-relevant HTS models in preclinical drug development to identify novel anti-seizure compounds. OBJECTIVES This paper developed high-throughput preclinical screening models to identify new ASMs. METHODS 14 natural compounds (α-asarone, curcumin, vinpocetine, magnolol, ligustrazine, osthole, tanshinone IIA, piperine, gastrodin, quercetin, berberine, chrysin, schizandrin A and resveratrol) were assessed for their ability to suppress epileptiform activity as measured by multi-electrode arrays (MEA) in neural cultures derived from human induced pluripotent stem cells (iPSCs). In parallel, they were tested for anti-seizure effects in zebrafish and mouse models, which have been widely used in development of modern ASMs. The effects of the compounds in these models were compared. Two approved ASMs were used as positive controls. RESULTS Epileptiform activity could be induced in iPSCs-derived neurons following treatment with 4-aminopyridine (4-AP) and inhibited by standard ASMs, carbamazepine, and phenytoin. Eight of the 14 natural compounds significantly inhibited the epileptiform activity in iPSCs-derived neurons. Among them, piperine, magnolol, α-asarone, and osthole showed significant anti-seizure effects both in zebrafish and mice. Comparative analysis showed that compounds ineffective in the iPSCs-derived neural model also showed no anti-seizure effects in the zebrafish or mouse models. CONCLUSION Our findings support the use of iPSCs-derived human neurons for first-line high-throughput screening to identify compounds with anti-seizure properties and exclude ineffective compounds. Effective compounds may then be selected for animal evaluation before clinical testing. This integrated approach may improve the efficiency of developing novel ASMs.
Collapse
Affiliation(s)
- Chunfang Zhao
- School of Pharmacy, Nanchang University, Nanchang 330006, PR China
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne 3004, Australia
| | - Muhammad Shahid Javaid
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne 3004, Australia
| | - Ziyu Huang
- School of Pharmacy, Nanchang University, Nanchang 330006, PR China
| | - Wen He
- School of Pharmacy, Nanchang University, Nanchang 330006, PR China
| | - Hong Xu
- Institute of Life Science, Nanchang University, Nanchang 330031, PR China
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne 3004, Australia; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, PR China; Departments of Neurology and Medicine, University of Melbourne, Royal Melbourne Hospital, Melbourne, Australia.
| | - Chunbo Zhang
- School of Pharmacy, Nanchang University, Nanchang 330006, PR China; Department of Neuroscience, Central Clinical School, Monash University, Melbourne 3004, Australia; Department of Pathology and Institute of Molecular Pathology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
2
|
Sanchez-Arias JC, Carrier M, Frederiksen SD, Shevtsova O, McKee C, van der Slagt E, Gonçalves de Andrade E, Nguyen HL, Young PA, Tremblay MÈ, Swayne LA. A Systematic, Open-Science Framework for Quantification of Cell-Types in Mouse Brain Sections Using Fluorescence Microscopy. Front Neuroanat 2021; 15:722443. [PMID: 34949993 PMCID: PMC8691181 DOI: 10.3389/fnana.2021.722443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/28/2021] [Indexed: 02/03/2023] Open
Abstract
The ever-expanding availability and evolution of microscopy tools has enabled ground-breaking discoveries in neurobiology, particularly with respect to the analysis of cell-type density and distribution. Widespread implementation of many of the elegant image processing tools available continues to be impeded by the lack of complete workflows that span from experimental design, labeling techniques, and analysis workflows, to statistical methods and data presentation. Additionally, it is important to consider open science principles (e.g., open-source software and tools, user-friendliness, simplicity, and accessibility). In the present methodological article, we provide a compendium of resources and a FIJI-ImageJ-based workflow aimed at improving the quantification of cell density in mouse brain samples using semi-automated open-science-based methods. Our proposed framework spans from principles and best practices of experimental design, histological and immunofluorescence staining, and microscopy imaging to recommendations for statistical analysis and data presentation. To validate our approach, we quantified neuronal density in the mouse barrel cortex using antibodies against pan-neuronal and interneuron markers. This framework is intended to be simple and yet flexible, such that it can be adapted to suit distinct project needs. The guidelines, tips, and proposed methodology outlined here, will support researchers of wide-ranging experience levels and areas of focus in neuroscience research.
Collapse
Affiliation(s)
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Axe Neurosciences, Centre de Recherche du CHU de Québec, Université de Laval, Québec City, QC, Canada
| | | | - Olga Shevtsova
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Chloe McKee
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Emma van der Slagt
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Hai Lam Nguyen
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Penelope A Young
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Axe Neurosciences, Centre de Recherche du CHU de Québec, Université de Laval, Québec City, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada.,Department of Molecular Medicine, Université de Laval, Québec City, QC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| |
Collapse
|
3
|
Diverse Effects of an Acetylcholinesterase Inhibitor, Donepezil, on Hippocampal Neuronal Death after Pilocarpine-Induced Seizure. Int J Mol Sci 2017; 18:ijms18112311. [PMID: 29099058 PMCID: PMC5713280 DOI: 10.3390/ijms18112311] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/26/2017] [Accepted: 10/31/2017] [Indexed: 12/13/2022] Open
Abstract
Epileptic seizures are short episodes of abnormal brain electrical activity. Many survivors of severe epilepsy display delayed neuronal death and permanent cognitive impairment. Donepezil is an acetylcholinesterase inhibitor and is an effective treatment agent for Alzheimer’s disease. However, the role of donepezil in seizure-induced hippocampal injury remains untested. Temporal lobe epilepsy (TLE) was induced by intraperitoneal injection of pilocarpine (25 mg/kg). Donepezil (2.5 mg/kg/day) was administered by gavage in three different settings: (1) pretreatment for three days before the seizure; (2) for one week immediately after the seizure; and (3) for three weeks from three weeks after the seizure. We found that donepezil showed mixed effects on seizure-induced brain injury, which were dependent on the treatment schedule. Pretreatment with donepezil aggravated neuronal death, oxidative injury, and microglia activation. Early treatment with donepezil for one week showed neither adverse nor beneficial effects; however, a treatment duration of three weeks starting three weeks after the seizure showed a significant reduction in neuronal death, oxidative injury, and microglia activation. In conclusion, donepezil has therapeutic effects when injected for three weeks after seizure activity subsides. Therefore, the present study suggests that the therapeutic use of donepezil for epilepsy patients requires a well-conceived strategy for administration.
Collapse
|