1
|
Karim A, Raji Z, Habibi Y, Khalloufi S. A review on the hydration properties of dietary fibers derived from food waste and their interactions with other ingredients: opportunities and challenges for their application in the food industry. Crit Rev Food Sci Nutr 2024; 64:11722-11756. [PMID: 37565505 DOI: 10.1080/10408398.2023.2243510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Dietary fiber (DF) significantly affects the quality attributes of food matrices. Depending on its chemical composition, molecular structure, and degree of hydration, the behavior of DF may differ. Numerous reports confirm that incorporating DF derived from food waste into food products has significant effects on textural, sensory, rheological, and antimicrobial properties. Additionally, the characteristics of DF, modification techniques (chemical, enzymatic, mechanical, thermal), and processing conditions (temperature, pH, ionic strength), as well as the presence of other components, can profoundly affect the functionalities of DF. This review aims to describe the interactions between DF and water, focusing on the effects of free water, freezing-bound water, and unfreezing-bound water on the hydration capacity of both soluble and insoluble DF. The review also explores how the structural, functional, and environmental properties of DF contribute to its hydration capacity. It becomes evident that the interactions between DF and water, and their effects on the rheological properties of food matrices, are complex and multifaceted subjects, offering both opportunities and challenges for further exploration. Utilizing DF extracted from food waste exhibits promise as a sustainable and viable strategy for the food industry to create nutritious and high-value-added products, while concurrently reducing reliance on primary virgin resources.
Collapse
Affiliation(s)
- Ahasanul Karim
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada
| | - Zarifeh Raji
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada
| | - Youssef Habibi
- Sustainable Materials Research Center (SUSMAT-RC), University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| | - Seddik Khalloufi
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada
| |
Collapse
|
2
|
Cheng Y, Xue P, Chen Y, Xie J, Peng G, Tian S, Chang X, Yu Q. Effect of Soluble Dietary Fiber of Navel Orange Peel Prepared by Mixed Solid-State Fermentation on the Quality of Jelly. Foods 2023; 12:foods12081724. [PMID: 37107519 PMCID: PMC10137729 DOI: 10.3390/foods12081724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/09/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The aim of this work was to prepare soluble dietary fibers (SDFs) from insoluble dietary fiber of navel orange peel (NOP-IDF) by mixed solid-state fermentation (M-SDF) and to investigate the influence of fermentation modification on the structural and functional characteristics of SDF in comparison with untreated soluble dietary fiber (U-SDF) of NOP-IDF. Based on this, the contribution of two kinds of SDF to the texture and microstructure of jelly was further examined. The analysis of scanning electron microscopy indicated that M-SDF exhibited a loose structure. The analysis of scanning electron microscopy indicated that M-SDF exhibited a loose structure. In addition, M-SDF exhibited increased molecular weight and elevated thermal stability, and had significantly higher relative crystallinity than U-SDF. Fermentation modified the monosaccharide composition and ratio of SDF, as compared to U-SDF. The above results pointed out that the mixed solid-state fermentation contributed to alteration of the SDF structure. Furthermore, the water holding capacity and oil holding capacity of M-SDF were 5.68 ± 0.36 g/g and 5.04 ± 0.04 g/g, which were about six times and two times of U-SDF, respectively. Notably, the cholesterol adsorption capacity of M-SDF was highest at pH 7.0 (12.88 ± 0.15 g/g) and simultaneously exhibited better glucose adsorption capacity. In addition, jellies containing M-SDF exhibited a higher hardness of 751.15 than U-SDF, as well as better gumminess and chewiness. At the same time, the jelly added with M-SDF performed a homogeneous porous mesh structure, which contributed to keeping the texture of the jelly. In general, M-SDF displayed much excellent structural and functional properties, which could be utilized to develop functional food.
Collapse
Affiliation(s)
- Yanan Cheng
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Puyou Xue
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Guanyi Peng
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Shenglan Tian
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xinxin Chang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
3
|
Magalhães D, Vilas-Boas AA, Teixeira P, Pintado M. Functional Ingredients and Additives from Lemon by-Products and Their Applications in Food Preservation: A Review. Foods 2023; 12:foods12051095. [PMID: 36900612 PMCID: PMC10001058 DOI: 10.3390/foods12051095] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Citrus trees are among the most abundant fruit trees in the world, with an annual production of around 124 million tonnes. Lemons and limes are among the most significant contributors, producing nearly 16 million tonnes per year. The processing and consumption of citrus fruits generates a significant amount of waste, including peels, pulp, seeds, and pomace, which represents about 50% of the fresh fruit. Citrus limon (C. limon) by-products are composed of significant amounts of bioactive compounds, such as phenolic compounds, carotenoids, vitamins, essential oils, and fibres, which give them nutritional value and health benefits such as antimicrobial and antioxidant properties. These by-products, which are typically discarded as waste in the environment, can be explored to produce new functional ingredients, a desirable approach from a circular economy perspective. The present review systematically summarizes the potential high-biological-value components extracted from by-products to achieve a zero-waste goal, focusing on the recovery of three main fractions: essential oils, phenolic compounds, and dietary fibres, present in C. limon by-products, and their applications in food preservation.
Collapse
|
4
|
Physicochemical, rheological and microstructural properties of chicken meat emulsion with the addition of Chinese yam (Dioscorea polystachya) and arrowroot (Maranta arundinacea) as meat substitutes. FUTURE FOODS 2023. [DOI: 10.1016/j.fufo.2023.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023] Open
|
5
|
Nirmal NP, Khanashyam AC, Mundanat AS, Shah K, Babu KS, Thorakkattu P, Al-Asmari F, Pandiselvam R. Valorization of Fruit Waste for Bioactive Compounds and Their Applications in the Food Industry. Foods 2023; 12:foods12030556. [PMID: 36766085 PMCID: PMC9914274 DOI: 10.3390/foods12030556] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
The fruit production and processing sectors produce tremendous amounts of by-products and waste that cause significant economic losses and an undesirable impact on the environment. The effective utilization of these fruit wastes can help to reduce the carbon footprint and greenhouse gas emissions, thereby achieving sustainable development goals. These by-products contain a variety of bioactive compounds, such as dietary fiber, flavonoids, phenolic compounds, antioxidants, polysaccharides, and several other health-promoting nutrients and phytochemicals. These bioactive compounds can be extracted and used as value-added products in different industrial applications. The bioactive components extracted can be used in developing nutraceutical products, functional foods, or food additives. This review provides a comprehensive review of the recent developments in fruit waste valorization techniques and their application in food industries. The various extraction techniques, including conventional and emerging methods, have been discussed. The antioxidant and antimicrobial activities of the active compounds extracted and isolated from fruit waste have been described. The most important food industrial application of bioactive compounds extracted from fruit waste (FW) has been provided. Finally, challenges, future direction, and concluding remarks on the topic are summarized.
Collapse
Affiliation(s)
- Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
- Correspondence: (N.P.N.); (R.P.); Tel.: +66-28002380-429 (N.P.N.)
| | | | - Anjaly Shanker Mundanat
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat 131028, India
| | - Kartik Shah
- Sargento Foods, 305 Pine Street, Elkhart Lake, WI 53020, USA
| | | | - Priyamvada Thorakkattu
- Department of Animal Sciences and Industry/Food Science Institute, Kansas State University, Manhattan, KS 66506, USA
| | - Fahad Al-Asmari
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Ravi Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod 671124, India
- Correspondence: (N.P.N.); (R.P.); Tel.: +66-28002380-429 (N.P.N.)
| |
Collapse
|
6
|
Wu Q, Zang M, Zhao B, Wang S, Zhang S, Zhu N, Liu M, Li S, Lv G, Liu B, Zhao Y, Qiao X. Effect of citrus fiber on the phosphate-mediated gel properties of myofibrillar protein and partial replacement of phosphate. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Putri NI, Celus M, Van Audenhove J, Nanseera RP, Van Loey A, Hendrickx M. Functionalization of pectin-depleted residue from different citrus by-products by high pressure homogenization. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Kristensen K, Warne G, Agarwal D, Foster TJ. Effects of different moisture contents on the structural and functional properties of cellulose with cell wall components in different citrus fibres. Food Funct 2022; 13:2756-2767. [PMID: 35171166 DOI: 10.1039/d1fo02808a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This research used a multi-method approach to analyse the influence of different moisture levels (low, medium and high) on the structural and functional properties of cellulose with cell wall materials such as pectin, lignin, and hemicellulose present in citrus fibres. The influence of the drying and purification processes and the source of the citrus fibres on these interactions were also considered. A fluidized bed dryer results in a higher aggregation of cellulose fibres, which limits their interactions with water, pectin, lignin, and hemicellulose. Citrus fibre suspension produce by a alcohol washing in combination with a centrifugal drying process showed higher storage modulus (G'), loss modulus (G'') and water retention capacity. The compositions of the citrus fibres and the type of hydrogen bonding (analysed by FTIR) play a key role in generating stable rheological and thermal properties as well as controlling the moisture sorption behaviour of the citrus fibres.
Collapse
Affiliation(s)
- Kaja Kristensen
- Division of Food, Nutrition, and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - George Warne
- Division of Food, Nutrition, and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Deepa Agarwal
- Division of Food, Nutrition, and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK. .,The New Zealand Institute of Plant and Food Research, Plant & Food Research Canterbury Agriculture & Science Centre, Gerald St, Lincoln 7608, New Zealand
| | - Tim J Foster
- Division of Food, Nutrition, and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| |
Collapse
|
9
|
Soleimanian Y, Sanou I, Turgeon SL, Canizares D, Khalloufi S. Natural plant fibers obtained from agricultural residue used as an ingredient in food matrixes or packaging materials: A review. Compr Rev Food Sci Food Saf 2021; 21:371-415. [PMID: 34941013 DOI: 10.1111/1541-4337.12875] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/25/2021] [Accepted: 10/23/2021] [Indexed: 01/02/2023]
Abstract
Every year, agrifood activities generate a large amount of plant byproducts, which have a low economical value. However, the valorization of these byproducts can contribute to increasing the intake of dietary fibers and reducing the environmental pollution. This review presents an overview of a wide variety of agricultural wastes applied in the formulation of different food products and sustainable packaging. In general, the incorporation of fibers into bakery, meat, and dairy products was successful, especially at a level of 10% or less. Fibers from a variety of crops improved the consistency, texture, and stability of sauce formulations without affecting sensory quality. In addition, fiber fortification (0.01-6.4%) presented considerable advantages in terms of rheology, texture, melting behavior, and fat replacement of ice cream, but in some cases had a negative impact on color and mouthfeel. In the case of beverages, promising effects on texture, viscosity, stability, and appetite control were obtained by the addition of soluble dietary fibers from grains and fruits with small particle size. Biocomposites used in packaging benefited from reinforcing effects of various plant fiber sources, but the extent of modification depended on the matrix type, fiber pretreatment, and concentration. The information synthesized in this contribution can be used as a tool to screen and select the most promising fiber source, fiber concentration, and pretreatment for specific food applications and sustainable packaging.
Collapse
Affiliation(s)
- Yasamin Soleimanian
- Soils Science and Agri-Food Engineering Department, Laval University, Québec City, Québec, Canada.,Institute of Nutrition and Functional Foods, Laval University, Québec City, Québec, Canada
| | - Ibrahima Sanou
- Soils Science and Agri-Food Engineering Department, Laval University, Québec City, Québec, Canada.,Institute of Nutrition and Functional Foods, Laval University, Québec City, Québec, Canada
| | - Sylvie L Turgeon
- Institute of Nutrition and Functional Foods, Laval University, Québec City, Québec, Canada.,Food Science Department, Laval University, Québec City, Québec, Canada
| | - Diego Canizares
- Department of Food Engineering and Technology, Institute of Biosciences, Language and Physical Sciences (IBILCE), UNESP - São Paulo State University, São José do Rio Preto, Brazil
| | - Seddik Khalloufi
- Soils Science and Agri-Food Engineering Department, Laval University, Québec City, Québec, Canada.,Institute of Nutrition and Functional Foods, Laval University, Québec City, Québec, Canada
| |
Collapse
|
10
|
Evaluation of the Structural, Physicochemical and Functional Properties of Dietary Fiber Extracted from Newhall Navel Orange By-Products. Foods 2021; 10:foods10112772. [PMID: 34829055 PMCID: PMC8625875 DOI: 10.3390/foods10112772] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 11/23/2022] Open
Abstract
Ultrasound-assisted enzymatic treatment was used to treat Newhall navel orange peel and residue, and then the structural, physicochemical and functional properties of extracted soluble dietary fibers (SDF) and insoluble dietary fibers (IDF) were investigated. The structural properties were determined using scanning electron microscopy, X-ray diffraction, FT-IR and monosaccharide composition. Among these dietary fibers, residue-SDF showed a more complex structure, while peel-IDF exhibited a looser structure. Four samples showed representative infrared spectral features of polysaccharides, typical cellulose crystalline structure and diverse monosaccharide composition. Furthermore, residue-IDF exhibited higher oil-holding capacity (2.08 g/g), water-holding capacity (13.43 g/g) and nitrite ion adsorption capacity (NIAC) than other three samples, and residue-SDF showed the highest swelling capacity (23.33 mL/g), cation exchange capacity (0.89 mmol/g) and cholesterol adsorption capacity (CAC) among these dietary fibers. In summary, this study suggests that the residue-SDF and residue-IDF could be used as the ideal dietary fibers for application in the functional food industry.
Collapse
|
11
|
Powell MJ, Sebranek JG, Prusa KJ, Tarté R. Effect of Citrus Fiber Addition on Quality Attributes of Fully Cooked Deli-Style Turkey Breast. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.12283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The effects of citrus fiber on the color, texture, lipid oxidation, and sensory characteristics of fully cooked deli-style turkey breast during storage (3°C) were studied. Four treatments were evaluated: control, 0.25% citrus fiber, 0.50% citrus fiber, and 0.105% sodium tripolyphosphate. The study was independently replicated 3 times. Proximate analysis and pH were measured once, and color (Hunter L, a, b), lipid oxidation (thiobarbituric acid-reactive substances), texture (Texture Profile Analysis hardness, resilience, cohesiveness, springiness, and chewiness), and sensory parameters (turkey aroma, texture, moistness, turkey flavor, off-flavor, and color) were measured at regular intervals on vacuum-packaged samples throughout an 84-d storage period. Aside from Texture Profile Analysis resiliency and sensory moistness lower in the 0.105% sodium tripolyphosphate group, all experimental treatments resulted in product with equivalent quality attributes to the control. At the levels tested in this specific application (high moisture, low fat), the citrus fiber evaluated did not affect the product’s quality attributes in a measurable way.
Collapse
Affiliation(s)
| | | | - Kenneth J. Prusa
- Iowa State University Department of Food Science and Human Nutrition
| | | |
Collapse
|
12
|
Valorization of Citrus Co-Products: Recovery of Bioactive Compounds and Application in Meat and Meat Products. PLANTS 2021; 10:plants10061069. [PMID: 34073552 PMCID: PMC8228688 DOI: 10.3390/plants10061069] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/01/2022]
Abstract
Citrus fruits (orange, lemon, mandarin, and grapefruit) are one of the most extensively cultivated crops. Actually, fresh consumption far exceeds the demand and, subsequently, a great volume of the production is destined for the citrus-processing industries, which produce a huge quantity of co-products. These co-products, without proper treatment and disposal, might cause severe environmental problems. The co-products obtained from the citrus industry may be considered a very important source of high-added-value bioactive compounds that could be used in the pharmaceutical, cosmetic, and dietetic industries, and mainly in the food industry. Due to consumer demands, the food industry is exploring a new and economical source of bioactive compounds to develop novel foods with healthy properties. Thus, the aim of this review is to describe the possible benefits of citrus co-products as a source of bioactive compounds and their applications in the development of healthier meat and meat products.
Collapse
|
13
|
Zhu Y, Guo L, Yang Q. Partial replacement of nitrite with a novel probiotic Lactobacillus plantarum on nitrate, color, biogenic amines and gel properties of Chinese fermented sausages. Food Res Int 2020; 137:109351. [DOI: 10.1016/j.foodres.2020.109351] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/02/2020] [Accepted: 05/24/2020] [Indexed: 10/24/2022]
|
14
|
Sharaf Eddin A, Adegoke S, Issa AT, Wilson C, Tahergorabi R. Physicochemical Changes of Surimi Gels with Addition of Different Particle Sizes of Citrus Peel Fiber. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2020. [DOI: 10.1080/10498850.2020.1829229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | | | | | | | - Reza Tahergorabi
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| |
Collapse
|
15
|
Li K, Liu JY, Fu L, Zhao YY, Zhu H, Zhang YY, Zhang H, Bai YH. Effect of bamboo shoot dietary fiber on gel properties, microstructure and water distribution of pork meat batters. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:1180-1190. [PMID: 31480140 PMCID: PMC7322660 DOI: 10.5713/ajas.19.0215] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/29/2019] [Accepted: 08/14/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To develop healthier comminuted meat products to meet consumer demand, the gel properties, rheological properties, microstructure and water distribution of pork meat batters formulated with various amounts of bamboo shoot dietary fiber (BSDF) were investigated. METHODS Different levels of BSDF (0% to 4%) were added to pork batters, and the pH, color, water-holding capacity, texture and rheological properties of pork batters were determined. Then, pork batters were analyzed for their microstructure and water distribution using scanning electron microscopy (SEM) and low-field nuclear magnetic resonance (LF-NMR). RESULTS Compared with the control, BSDF addition into meat batters showed a significant reduction in L*-value and a significant increase in b*-value (p<0.05). BSDF addition of up to 4% reduced the pH value of pork batters by approximately 0.15 units; however, the cooking loss and expressible water loss decreased significantly (p<0.05) with the increased addition of BSDF. The hardness and gel strength were noticeably enhanced (p<0.05) as the content of BSDF increased. The rheological results showed that BSDF added into pork batters produced higher storage modulus (G') and loss modulus (G″) values. The SEM images suggested that the addition of BSDF could promote pork batters to form a more uniform and compact microstructure. The proportion of immobilized water increased significantly (p<0.05), while the population of free water was decreased (p<0.05), indicating that BSDF improved the water-holding capability of pork batters by decreasing the fraction of free water. CONCLUSION BSDF could improve the gel properties, rheological properties and water distribution of pork meat batters and decrease the proportion of free water, suggesting that BSDF has great potential as an effective binder in comminuted meat products.
Collapse
Affiliation(s)
- Ke Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Collaborative Innovation Center for Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, 450001, China
| | - Jun-Ya Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Collaborative Innovation Center for Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, 450001, China
| | - Lei Fu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Collaborative Innovation Center for Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, 450001, China
| | - Ying-Ying Zhao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Collaborative Innovation Center for Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, 450001, China
| | - He Zhu
- School of Food Science and Technology, Shandong Agriculture and Engineering University, Jinan 250100, China
| | - Yan-Yan Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Collaborative Innovation Center for Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, 450001, China
| | - Hua Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Collaborative Innovation Center for Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, 450001, China
| | - Yan-Hong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Collaborative Innovation Center for Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, 450001, China
| |
Collapse
|
16
|
Szafrańska JO, Sołowiej BG. Effect of different fibres on texture, rheological and sensory properties of acid casein processed cheese sauces. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14485] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jagoda O. Szafrańska
- Department of Milk Technology and Hydrocolloids Faculty of Food Sciences and Biotechnology University of Life Sciences in Lublin Skromna 8 20‐704 Lublin Poland
| | - Bartosz G. Sołowiej
- Department of Milk Technology and Hydrocolloids Faculty of Food Sciences and Biotechnology University of Life Sciences in Lublin Skromna 8 20‐704 Lublin Poland
| |
Collapse
|
17
|
Effect of sodium alginate on physical-chemical, protein conformation and sensory of low-fat frankfurters. Meat Sci 2020; 162:108043. [DOI: 10.1016/j.meatsci.2019.108043] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 01/01/2023]
|
18
|
Marconato AM, Hartmann GL, Santos MMR, Amaral LAD, Souza GHOD, Santos EFD, Novello D. Sweet potato peel flour in hamburger: effect on physicochemical, technological and sensorial characteristics. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2020. [DOI: 10.1590/1981-6723.11519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract The aim of this research was to evaluate the influence of sweet potato peel flour (SPPF) on the physicochemical, technological and sensorial characteristics of bovine hamburger. Four hamburger formulations were prepared added SPPF: F1 (0%), F2 (0.75%), F3 (1.5%) and F4 (2.25%). The flour was characterized by high levels of minerals, carbohydrate and dietary fiber, which improved the nutritional profile of the hamburger. There was an increase in moisture retention and shrinkage, as well as a reduction in fat retention and cooking yield, as the level of SPPF addition increased. The addition of flour in the product significantly reduced (p < 0.05) the values of L*, a* and b*. Similar acceptability to the standard sample was checked for the hamburger with the addition of up to 1.5% SPPF. However, all formulations had an acceptability index greater than 70%. It is concluded that SPPF is a potential ingredient to be added in bovine hamburger, improving nutritional and technological parameters and with low influence on the sensorial characteristics.
Collapse
|
19
|
Li K, Zhang M, Bhandari B, Li L, Yang C. Effect of pre‐emulsified soybean oil as a fat replacer on the physical and sensory attributes of reduced‐fat filling in steamed buns. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kun Li
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi Jiangsu China
- International Joint Laboratory on Food SafetyJiangnan University Wuxi Jiangsu China
| | - Min Zhang
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi Jiangsu China
- Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and TechnologyJiangnan University Wuxi Jiangsu China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland Brisbane Queensland Australia
| | - Linlin Li
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi Jiangsu China
| | - Chaohui Yang
- Yechun Food Production and Distribution Co., Ltd. Yangzhou Jiangsu China
| |
Collapse
|
20
|
Evaluation of citrus fiber as a natural replacer of sodium phosphate in alternatively-cured all-pork Bologna sausage. Meat Sci 2019; 157:107883. [PMID: 31284235 DOI: 10.1016/j.meatsci.2019.107883] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 06/25/2019] [Accepted: 06/30/2019] [Indexed: 11/22/2022]
Abstract
The effects of sodium tripolyphosphate replacement with citrus fiber on color, texture, lipid oxidation, and sensory characteristics of an alternatively-cured all-pork Bologna sausage during 98 d of storage at storage 0-1 °C were studied. Replacement of sodium phosphates in processed meat with citrus fiber could enable manufacturers to make their products more consistent with the current "clean label" trend. The Bologna sausage was assigned one of five treatments: sodium tripolyphosphate control (0.38%), no-sodium-tripolyphosphate control, or one of several citrus fiber levels (0.50%, 0.75%, 1.00%). Citrus fiber treatments resulted in Bologna sausage with acceptable technological parameters, as indicated by similar cook/chill yields and emulsion stability compared to the sodium tripolyphosphate control. The results showed the replacement of sodium tripolyphosphate with citrus fiber did not significantly alter most physical, chemical or sensory characteristics of the Bologna sausage during refrigerated storage.
Collapse
|
21
|
Structural changes evaluation with Raman spectroscopy in meat batters prepared by different processes. Journal of Food Science and Technology 2017; 54:2852-2860. [PMID: 28928525 DOI: 10.1007/s13197-017-2723-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 10/19/2022]
Abstract
A comprehensive study was conducted to evaluate the structural changes of meat and protein of pork batters produced by chopping or beating process through the phase-contrast micrograph, laser light scattering analyzer, scanning electronic microscopy and Raman spectrometer. The results showed that the shattered myofibrilla fragments were shorter and particle-sizes were smaller in the raw batter produced by beating process than those in the chopping process. Compared with the raw and cooked batters produced by chopping process, modifications in amide I and amide III bands revealed a significant decrease of α-helix content and an increase of β-sheet, β-turn and random coils content in the beating process. The changes in secondary structure of protein in the batter produced by beating process was thermally stable. Moreover, more tyrosine residues were buried, and more gauche-gauche-trans disulfide bonds conformations and hydrophobic interactions were formed in the batter produced by beating process.
Collapse
|