1
|
Sharma D, Sharma S, Mandal V, Dhobi M. Unveiling the anti-inflammatory potential of Acalypha indica L. and analyzing its research trend: digging deep to learn deep. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1935-1956. [PMID: 37796311 DOI: 10.1007/s00210-023-02734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
The plant Acalypha indica L. is a well-known traditional plant belonging to the family Euphorbiaceae. Traditional practices of the plant claim to treat asthma, pneumonia, wound healing, rheumatoid arthritis, bronchitis, and skin disorders. The major phytochemicals reported are cyanogenic glucosides, tannins, coumarins, flavonoid glycosides, fatty acids, and volatile oils. To summarize the anti-inflammatory potential of Acalypha indica extract and its phytochemicals through preclinical studies. The search terms include anti-inflammatory, Acalypha indica, and Acalypha indica extract independently or in combination with pro-inflammatory markers using various databases, including Scopus, Web of Science, PubMed, ProQuest, and Google Scholar. The results of preclinical studies confirm that Acalypha indica exhibits strong anti-inflammatory activity. Most of the experimental studies that have been conducted on plant extract are protein denaturation, human red blood cell membrane stabilization assay, and carrageenan-induced inflammation models. However, the molecular mechanism in these studies is still unclear to demonstrate its anti-inflammatory effects. Acalypha indica possesses anti-inflammatory effects that may be due to the presence of phenolic compounds especially flavonoids present in the Acalypha indica. Thus, further research is needed, to understand mechanistic insights of the plant phytochemicals to represent anti-inflammatory properties.
Collapse
Affiliation(s)
- Divya Sharma
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India
| | - Supriya Sharma
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India
| | - Vivekananda Mandal
- Division of Pharmacognosy, Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, Chattisgarh, 495009, India
| | - Mahaveer Dhobi
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India.
| |
Collapse
|
2
|
Harakeh S, Niyazi HA, Niyazi HA, Abdalal SA, Mokhtar JA, Almuhayawi MS, Alkuwaity KK, Abujamel TS, Slama P, Haque S. Integrated Network Pharmacology Approach to Evaluate Bioactive Phytochemicals of Acalypha indica and Their Mechanistic Actions to Suppress Target Genes of Tuberculosis. ACS OMEGA 2024; 9:2204-2219. [PMID: 38250414 PMCID: PMC10795024 DOI: 10.1021/acsomega.3c05589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024]
Abstract
Mycobacterium tuberculosis is responsible for tuberculosis (TB) all over the world. Despite tremendous advancements in biomedical research, new treatment approaches, and preventive measures, TB incidence rates continue to ascend. The herbaceous plant Acalypha indica, also known as Indian Nettle, belongs to the Euphorbiaceae family and is known as one of the most important sources of medicines and pharmaceuticals for the medical therapy for a range of ailments. However, the precise molecular mechanism of its therapeutic action is still unknown. In this study, an integrated network pharmacology approach was employed to explore the potential mechanism of A. indica phytochemicals against TB. The active chemical components of A. indica were collected from two independent databases and published sources, whereas SwissTargetPrediction was used to identify the target genes of these phytochemicals. GeneCards and DisGeNET databases were employed to retrieve tuberculosis-related genes and variants. Following the evaluation of overlapped genes, gene enrichment analysis and PPI network analysis were performed using the DAVID and STRING databases, respectively. Later, to identify the potential target(s) for the disease, molecular docking was performed. A. indica revealed 9 active components with 259 potential therapeutic targets; TB attributed 694 intersecting genes from the two data sets; and both TB and A. indica overlapped 44 potential targets. The in-depth analysis based on the degree revealed that AKT1 and EGFR formed the foundation of the PPI network. Moreover, docking analysis followed by molecular dynamics simulations revealed that phytosterol and stigmasterol have higher binding affinities to AKT1 and EGFR to suppress tuberculosis. This study provides a convincing proof that A. indica can be exploited to target TB after experimental endorsement; further, it lays the framework for more experimental research on A. indica's anti-TB activity.
Collapse
Affiliation(s)
- Steve Harakeh
- King
Fahd Medical Research Center, King Abdulaziz
University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
- Yousef
Abdul Latif Jameel Scientific Chair of Prophetic Medicine Application,
Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hanouf A. Niyazi
- Department
of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hatoon A. Niyazi
- Department
of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shaymaa A. Abdalal
- Department
of Community Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Vaccine
and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jawahir A. Mokhtar
- Department
of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Vaccine
and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed S. Almuhayawi
- Department
of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khalil K. Alkuwaity
- Vaccine
and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department
of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Turki S. Abujamel
- Vaccine
and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department
of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Petr Slama
- Laboratory
of Animal Immunology and Biotechnology, Department of Animal Morphology,
Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Shafiul Haque
- Research
and Scientific Studies Unit, College of Nursing and Allied Health
Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Gilbert
and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 11022801, Lebanon
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 13306, United Arab
Emirates
| |
Collapse
|
3
|
Sillapachaiyaporn C, Rangsinth P, Nilkhet S, Moungkote N, Chuchawankul S. HIV-1 Protease and Reverse Transcriptase Inhibitory Activities of Curcuma aeruginosa Roxb. Rhizome Extracts and the Phytochemical Profile Analysis: In Vitro and In Silico Screening. Pharmaceuticals (Basel) 2021; 14:ph14111115. [PMID: 34832897 PMCID: PMC8621417 DOI: 10.3390/ph14111115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/08/2023] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) infection causes acquired immunodeficiency syndrome (AIDS). Currently, several anti-retroviral drugs are available, but adverse effects of these drugs have been reported. Herein, we focused on the anti-HIV-1 activity of Curcuma aeruginosa Roxb. (CA) extracted by hexane (CA-H), ethyl acetate (CA-EA), and methanol (CA-M). The in vitro HIV-1 protease (PR) and HIV-1 reverse transcriptase (RT) inhibitory activities of CA extracts were screened. CA-M potentially inhibited HIV-1 PR (82.44%) comparable to Pepstatin A (81.48%), followed by CA-EA (67.05%) and CA-H (47.6%), respectively. All extracts exhibited moderate inhibition of HIV-1 RT (64.97 to 76.93%). Besides, phytochemical constituents of CA extracts were identified by GC-MS and UPLC-HRMS. Fatty acids, amino acids, and terpenoids were the major compounds found in the extracts. Furthermore, drug-likeness parameters and the ability of CA-identified compounds on blocking of the HIV-1 PR and RT active sites were in silico investigated. Dihydroergocornine, 3β,6α,7α-trihydroxy-5β-cholan-24-oic acid, and 6β,11β,16α,17α,21-Pentahydroxypregna-1,4-diene-3,20-dione-16,17-acetonide showed strong binding affinities at the active residues of both HIV-1 PR and RT. Moreover, antioxidant activity of CA extracts was determined. CA-EA exhibited the highest antioxidant activity, which positively related to the amount of total phenolic content. This study provided beneficial data for anti-HIV-1 drug discovery from CA extracts.
Collapse
Affiliation(s)
- Chanin Sillapachaiyaporn
- Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (C.S.); (S.N.)
| | - Panthakarn Rangsinth
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (P.R.); (N.M.)
| | - Sunita Nilkhet
- Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (C.S.); (S.N.)
| | - Nuntanat Moungkote
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (P.R.); (N.M.)
| | - Siriporn Chuchawankul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (P.R.); (N.M.)
- Immunomodulation of Natural Products Research Group, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-2-218-1548
| |
Collapse
|
4
|
Sahukari R, Punabaka J, Bhasha S, Ganjikunta VS, Kondeti Ramudu S, Kesireddy SR, Ye W, Korivi M. Phytochemical Profile, Free Radical Scavenging and Anti-Inflammatory Properties of Acalypha Indica Root Extract: Evidence from In Vitro and In Vivo Studies. Molecules 2021; 26:molecules26206251. [PMID: 34684831 PMCID: PMC8537703 DOI: 10.3390/molecules26206251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 01/08/2023] Open
Abstract
In our in vitro and in vivo studies, we used Acalypha indica root methanolic extract (AIRME), and investigated their free radical scavenging/antioxidant and anti-inflammatory properties. Primarily, phytochemical analysis showed rich content of phenols (70.92 mg of gallic acid/g) and flavonoids (16.01 mg of rutin/g) in AIRME. We then performed HR-LC-MS and GC-MS analyses, and identified 101 and 14 phytochemical compounds, respectively. Among them, ramipril glucuronide (1.563%), antimycin A (1.324%), swietenine (1.134%), quinone (1.152%), oxprenolol (1.118%), choline (0.847%), bumetanide (0.847%) and fenofibrate (0.711%) are the predominant phytomolecules. Evidence from in vitro studies revealed that AIRME scavenges DPPH and hydroxyl radicals in a concentration dependent manner (10–50 μg/mL). Similarly, hydrogen peroxide and lipid peroxidation were also remarkably inhibited by AIRME as concentration increases (20–100 μg/mL). In vitro antioxidant activity of AIRME was comparable to ascorbic acid treatment. For in vivo studies, carrageenan (1%, sub-plantar) was injected to rats to induce localized inflammation. Acute inflammation was represented by paw-edema, and significantly elevated (p < 0.05) WBC, platelets and C-reactive protein (CRP). However, AIRME pretreatment (150/300 mg/kg bodyweight) significantly (p < 0.05) decreased edema volume. This was accompanied by a significant (p < 0.05) reduction of WBC, platelets and CRP with both doses of AIRME. The decreased activities of superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase in paw tissue were restored (p < 0.05 / p < 0.01) with AIRME in a dose-dependent manner. Furthermore, AIRME attenuated carrageenan-induced neutrophil infiltrations and vascular dilation in paw tissue. For the first time, our findings demonstrated the potent antioxidant and anti-inflammatory properties of AIRME, which could be considered to develop novel anti-inflammatory drugs.
Collapse
Affiliation(s)
- Ravi Sahukari
- Department of Zoology, Sri Venkateswara University, Tirupati 517502, India; (R.S.); (J.P.); (S.B.); (V.S.G.); (S.R.K.)
| | - Jyothi Punabaka
- Department of Zoology, Sri Venkateswara University, Tirupati 517502, India; (R.S.); (J.P.); (S.B.); (V.S.G.); (S.R.K.)
| | - Shanmugam Bhasha
- Department of Zoology, Sri Venkateswara University, Tirupati 517502, India; (R.S.); (J.P.); (S.B.); (V.S.G.); (S.R.K.)
| | - Venkata Subbaiah Ganjikunta
- Department of Zoology, Sri Venkateswara University, Tirupati 517502, India; (R.S.); (J.P.); (S.B.); (V.S.G.); (S.R.K.)
| | | | - Sathyavelu Reddy Kesireddy
- Department of Zoology, Sri Venkateswara University, Tirupati 517502, India; (R.S.); (J.P.); (S.B.); (V.S.G.); (S.R.K.)
| | - Weibing Ye
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, China
- Correspondence: (W.Y.); (M.K.); Tel.: +86-579-8229-1009 (W.Y. & M.K.)
| | - Mallikarjuna Korivi
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, China
- Correspondence: (W.Y.); (M.K.); Tel.: +86-579-8229-1009 (W.Y. & M.K.)
| |
Collapse
|
5
|
Ciocarlan A. (+)-Larixol and Larixyl Acetate: Syntheses, Phytochemical Studies and Biological Activity Assessments. CHEMISTRY JOURNAL OF MOLDOVA 2021. [DOI: 10.19261/cjm.2021.836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
(+)-Larixol is a well-known labdane-type diterpenoid widely used in organic synthesis. The present review covers the (+)-larixol based chemical transformations, the results of phytochemical analysis of new (+)-larixol containing species, as well as recent data on biological activity of (+)-larixol and practical applications where it is mentioned.
Collapse
|
6
|
Xie M, Dong X, Yu Y, Cui L. A novel method for detection of lipid oxidation in edible oil. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Reddy K, Prasad S, Subbaiah G, Ravi S, Gopal Reddy B, Shanmugam B. Preclinical study on effects of Acalypha indica on streptozotocin-induced liver damage in diabetic rats. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_272_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
8
|
Kadam D, Palamthodi S, Lele SS. LC-ESI-Q-TOF-MS/MS profiling and antioxidant activity of phenolics from L. Sativum seedcake. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2018; 55:1154-1163. [PMID: 29487458 PMCID: PMC5821675 DOI: 10.1007/s13197-017-3031-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 01/03/2023]
Abstract
Lepidium sativum is widely used as a culinary and medicinal herb and is claimed to cure many diseases. In this study, an attempt was made to investigate the biochemical composition and functional properties of L. sativum ethanolic extract. The extract contained a total phenolic content of 11.03 ± 0.75 (mg GAE/g dw plant material) and a flavonoid content of 4.79 ± 0.24 (mg QE/100 g dw plant material). Further, the extract was characterized by LC-ESI-Q-TOF-MS/MS profiling and the results showed that the ethanolic fraction contains many important phenolics such as Kaempferol, Coumaroylquinic acid, p-Coumaroyl glycolic acid, Caffeic acid. The identified compounds are known for their biological properties and therefore, the functional properties of the extract as a whole were also studied. The extract showed significant antioxidant activity (IC50 values) 162.4 ± 2.3, 35.29 ± 1.02, 187.12 ± 3.4 and 119.32 ± 1.5 μg/ml in terms of DPPH, ABTS, Superoxide scavenging activity and metal chelating property respectively. Further, the extract showed IC50 values, 73.72 ± 1.23 and 121.78 ± 1.03 μg/ml in HRBC membrane stabilization ability and protein denaturation inhibition capacity respectively, which in turn is a measure of its anti-inflammatory activity. The results of the study are promising and serve basis for further investigation into the plant and possible consideration for use in nutraceuticals and functional foods.
Collapse
Affiliation(s)
- Deepak Kadam
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019 India
| | - Shanooba Palamthodi
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019 India
| | - S. S. Lele
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019 India
| |
Collapse
|