1
|
Zheng L, Guo H, Zhu M, Xie L, Jin J, Korma SA, Jin Q, Wang X, Cacciotti I. Intrinsic properties and extrinsic factors of food matrix system affecting the effectiveness of essential oils in foods: a comprehensive review. Crit Rev Food Sci Nutr 2024; 64:7363-7396. [PMID: 36861257 DOI: 10.1080/10408398.2023.2184767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Essential oils (EOs) have been proved as natural food preservatives because of their effective and wide-spectrum antimicrobial activity. They have been extensively explored for potential applications in food industry, and substantial progresses have been achieved. However well EOs perform in antibacterial tests in vitro, it has generally been found that a higher level of EOs is needed to achieve the same effect in foods. Nevertheless, this unsimilar effect has not been clearly quantified and elaborated, as well as the underlying mechanisms. This review highlights the influence of intrinsic properties (e.g., oils and fats, carbohydrates, proteins, pH, physical structure, water, and salt) and extrinsic factors (e.g., temperature, bacteria characteristics, and packaging in vacuum/gas/air) of food matrix systems on EOs action. Controversy findings and possible mechanism hypotheses are also systematically discussed. Furthermore, the organoleptic aspects of EOs in foods and promising strategies to address this hurdle are reviewed. Finally, some considerations about the EOs safety are presented, as well as the future trends and research prospects of EOs applications in foods. The present review aims to fill the evidenced gap, providing a comprehensive overview about the influence of the intrinsic and extrinsic factors of food matrix systems to efficiently orientate EOs applications.
Collapse
Affiliation(s)
- Liyou Zheng
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, P. R. China
| | - Hongyan Guo
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, P. R. China
| | - Miaomiao Zhu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, P. R. China
| | - Liangliang Xie
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Jun Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Sharkia, Egypt
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, P. R. China
| | - Qingzhe Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome "Niccolò Cusano", Roma, Italy
| |
Collapse
|
2
|
Soutelino MEM, Silva ACDO, Rocha RDS. Natural Antimicrobials in Dairy Products: Benefits, Challenges, and Future Trends. Antibiotics (Basel) 2024; 13:415. [PMID: 38786143 PMCID: PMC11117376 DOI: 10.3390/antibiotics13050415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
This review delves into using natural antimicrobials in the dairy industry and examines various sources of these compounds, including microbial, plant, and animal sources. It discusses the mechanisms by which they inhibit microbial growth, for example, by binding to the cell wall's precursor molecule of the target microorganism, consequently inhibiting its biosynthesis, and interfering in the molecule transport mechanism, leading to cell death. In general, they prove to be effective against the main pathogens and spoilage found in food, such as Escherichia coli, Staphylococcus aureus, Bacillus spp., Salmonella spp., mold, and yeast. Moreover, this review explores encapsulation technology as a promising approach for increasing the viability of natural antimicrobials against unfavorable conditions such as pH, temperature, and oxygen exposure. Finally, this review examines the benefits and challenges of using natural antimicrobials in dairy products. While natural antimicrobials offer several advantages, including improved safety, quality, and sensory properties of dairy products, it is crucial to be aware of the challenges associated with their use, such as potential allergenicity, regulatory requirements, and consumer perception. This review concludes by emphasizing the need for further research to identify and develop effective and safe natural antimicrobials for the dairy industry to ensure the quality and safety of dairy products for consumers.
Collapse
Affiliation(s)
- Maria Eduarda Marques Soutelino
- Department of Food Technology (MTA), College of Veterinary, Fluminense Federal University (UFF), 24230-340 Niterói, Brazil; (M.E.M.S.); (A.C.d.O.S.)
| | - Adriana Cristina de Oliveira Silva
- Department of Food Technology (MTA), College of Veterinary, Fluminense Federal University (UFF), 24230-340 Niterói, Brazil; (M.E.M.S.); (A.C.d.O.S.)
| | - Ramon da Silva Rocha
- Food Engineering Department (ZEA), College of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), 13635-900 Pirassununga, Brazil
| |
Collapse
|
3
|
Badola R, Prasad W, Panjagari NR, Singh RRB, Singh AK, Hussain SA. Khoa and khoa based traditional dairy products: preparation, spoilage and shelf life extension. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1209-1221. [PMID: 36936112 PMCID: PMC10020399 DOI: 10.1007/s13197-022-05355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 10/19/2022]
Abstract
Khoa and khoa based products (burfi, peda, kalakand, milk cake, etc.) are a category of traditional dairy products of Indian subcontinent. They are prepared by open pan desiccation along with stirring and scraping of milk to the desired consistency, followed by addition of sugar and / or colour and flavoring ingredients. The peculiar sensory attributes developed during their course of preparation makes them unique, but their short shelf-life is a major challenge faced by the dairy industries. They are spoiled mainly because of yeast and mold growth along with detrimental changes in the sensory attributes. This review describes various preservation techniques explored in the last two decades such as packaging interventions, modified atmospheric and active packaging, chemical preservation, water activity modification, natural preservation, thermal treatments, bio-preservation, etc. which can be used either singly or in combination (hurdle technology), to enhance the shelf life of these milk products.
Collapse
Affiliation(s)
- Richa Badola
- Dairy Technology Division, ICAR-National Dairy Research Institute-Karnal, Haryana, 132001 India
| | - Writdhama Prasad
- Dairy Technology Division, ICAR-National Dairy Research Institute-Karnal, Haryana, 132001 India
| | - Narender Raju Panjagari
- Dairy Technology Division, ICAR-National Dairy Research Institute-Karnal, Haryana, 132001 India
| | - R. R. B. Singh
- Dairy Technology Division, ICAR-National Dairy Research Institute-Karnal, Haryana, 132001 India
| | - Ashish Kumar Singh
- Dairy Technology Division, ICAR-National Dairy Research Institute-Karnal, Haryana, 132001 India
| | - Shaik Abdul Hussain
- Dairy Technology Division, ICAR-National Dairy Research Institute-Karnal, Haryana, 132001 India
| |
Collapse
|
4
|
Rout S, Tambe S, Deshmukh RK, Mali S, Cruz J, Srivastav PP, Amin PD, Gaikwad KK, Andrade EHDA, Oliveira MSD. Recent trends in the application of essential oils: The next generation of food preservation and food packaging. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Kumar Pandey V, Shams R, Singh R, Dar AH, Pandiselvam R, Rusu AV, Trif M. A comprehensive review on clove (Caryophyllus aromaticus L.) essential oil and its significance in the formulation of edible coatings for potential food applications. Front Nutr 2022; 9:987674. [PMID: 36185660 PMCID: PMC9521177 DOI: 10.3389/fnut.2022.987674] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Many studies have demonstrated the use of synthetic preservatives and chemical additives in food is causing poisoning, cancer, and other degenerative disorders. New solutions for food preservation with quality maintenance are currently emerging. As a result, public concern has grown, as they desire to eat healthier products that use natural preservatives and compounds rather than synthetic ones. Clove is a highly prized spice used as a food preservative and for a variety of therapeutic reasons. Clove essential oil and its principal active component, eugenol, indicate antibacterial and antifungal action, aromaticity, and safety as promising and valuable antiseptics in the food sector. Clove essential oil and eugenol are found to have strong inhibition effects on a variety of food-source bacteria, and the mechanisms are linked to lowering migration and adhesion, as well as blocking the creation of biofilm and various virulence factors. This review emphasizes the importance of CEO (clove essential oil) in the food industry and how it can be explored with edible coatings to deliver its functional properties in food preservation.
Collapse
Affiliation(s)
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, India
| | - Rahul Singh
- Department of Bioengineering, Integral University, Lucknow, India
- Rahul Singh
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Pulwama, India
- *Correspondence: Aamir Hussain Dar
| | - R. Pandiselvam
- Division of Physiology, Biochemistry and Post-harvest Technology, ICAR–Central Plantation Crops Research Institute, Kasaragod, India
- R. Pandiselvam
| | - Alexandru Vasile Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Animal Science and Biotechnology Faculty, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Alexandru Vasile Rusu
| | - Monica Trif
- Department of Food Research, Centre for Innovative Process Engineering (CENTIV) GmbH, Stuhr, Germany
| |
Collapse
|
6
|
In-Vitro Study on the Antibacterial and Antioxidant Activity of Four Commercial Essential Oils and In-Situ Evaluation of Their Effect on Quality Deterioration of Pacific White Shrimp (Litopenaeus vannamei) during Cold Storage. Foods 2022; 11:foods11162475. [PMID: 36010475 PMCID: PMC9407435 DOI: 10.3390/foods11162475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
The antioxidant and antibacterial properties of four essential oils (oregano essential oil (OEO), tea tree essential oil (TTEO), wild orange essential oil (WOEO), and clove leaf essential oil (CLEO)) were determined. The in-vitro experiment indicated that CLEO had the highest total phenolic content and DPPH scavenging activity, and OEO displayed the highest antibacterial effect, so they were applied to maintain the quality of shrimp for further study. In-situ study, the total viable counts of shrimp were inhibited from 9.05 log CFU/g to 8.18 and 8.34 log CFU/g by 2% of OEO and CLEO treated alone on 10 d. The melanosis ratio was also retarded from 38.16% to 28.98% and 26.35% by the two essential oils. The inhibitory effects of OEO and CLEO on the increase of PPO activity, weight loss, and TCA-soluble peptides, and the decreasing tendency of whiteness, the contents of myofibrillar and sarcoplasmic proteins were also founded. The samples treated with 1% OEO + 1% CLEO had better quality than those treated alone. Therefore, the combination of OEO and CLEO had a synergistic effect, which displayed the highest efficiency to prevent the melanosis, bacterial growth, and protein hydrolysis of shrimp.
Collapse
|
7
|
Weragama D, Weerasingha V, Jayasumana L, Adikari J, Vidanarachchi JK, Priyashantha H. The physicochemical, microbiological, and organoleptic properties and antioxidant activities of cream cheeses fortified with dried curry leaves ( Murraya koenigii L.) powder. Food Sci Nutr 2021; 9:5774-5784. [PMID: 34646545 PMCID: PMC8498046 DOI: 10.1002/fsn3.2551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/12/2021] [Accepted: 08/16/2021] [Indexed: 01/24/2023] Open
Abstract
We aimed to investigate the effects of dried curry leaves powder (CLP) incorporation on physicochemical, microbiological, antioxidant, and sensory properties of cream cheeses. Varying levels of CLP infusions (i.e., T1: 0% [control], T2: 0.15%, T3: 0.2%, and T4: 0.25%; w/w%) were stored for 10 days at 4°C. Antioxidant properties were evaluated using total phenolic content, 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging ability, and ferric reducing antioxidant power using in vitro assays. Total antioxidant capacity significantly (p < .05) increased with the increasing levels of CLP. Physicochemical and microbiological qualities were not significantly affected by the addition of CLP, indicating the suitability of using CLP without compromising the quality of cream cheese. Organoleptic properties were affected with CLP addition, where T3 had the highest scores for color, aroma, flavor, texture, and overall acceptability. The principal component analysis provides the holistic approach of studying the variation associated with cream cheeses and the overall relationship among studied parameters. This provides strong references for novel dairy products added with antioxidant-rich Murraya koenigii L. powder. The study also has merits to promote scientific knowledge concerning, and how the incorporation would influence the physicochemical, organoleptic, and microbiological properties of cream cheese to deliver the value-added or diversified product to emerging consumers.
Collapse
Affiliation(s)
- Dilshani Weragama
- Faculty of AgricultureDepartment of Animal & Food SciencesRajarata University of Sri LankaAnuradhapuraSri Lanka
| | - Viraj Weerasingha
- Faculty of AgricultureDepartment of Animal & Food SciencesRajarata University of Sri LankaAnuradhapuraSri Lanka
| | - Lakmini Jayasumana
- Faculty of AgricultureDepartment of Animal & Food SciencesRajarata University of Sri LankaAnuradhapuraSri Lanka
| | - Jayantha Adikari
- Faculty of AgricultureDepartment of Animal & Food SciencesRajarata University of Sri LankaAnuradhapuraSri Lanka
| | - Janak K. Vidanarachchi
- Faculty of AgricultureDepartment of Animal ScienceUniversity PeradeniyaPeradeniyaSri Lanka
| | - Hasitha Priyashantha
- Department of Molecular SciencesSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
8
|
Chen K, Zhang M, Bhandari B, Mujumdar AS. Edible flower essential oils: A review of chemical compositions, bioactivities, safety and applications in food preservation. Food Res Int 2021; 139:109809. [PMID: 33509452 DOI: 10.1016/j.foodres.2020.109809] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022]
Abstract
In the context of consumers' growing concerns and boycotts of artificial and harmful chemicals, satisfying the demands for good-quality food products possessing clean and safe images is a challenge for food industry. Due to natural and avirulent images, various bioactivities as well as potentials to be used as safer substitutes for chemical preservatives, flower essential oils (EOs) have aroused increasing interests in the recent past. Many literatures have verified the biological activities of flower EOs, and have given high value to the preservative potentials of flower EOs in food systems. In this work, a review is done on the most recent publications associating the chemical constituents, bioactivities (antibacterial, antifungal, antioxidant and anti-pest abilities) and safety of flower EOs. The effects of flower EOs on food flavor are also discussed. Finally, the current combined preservation applications of flower EOs and other technologies are summarized.
Collapse
Affiliation(s)
- Kai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Shandong Huamei Biology Science & Technology Co., Ltd., 250400 Pingyin, Shandong, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, China.
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Ste. Anne de Bellevue, Quebec H9×3V9, Canada
| |
Collapse
|
9
|
Combination of essential oils in dairy products: A review of their functions and potential benefits. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|